
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
THESIS 

Approved for public release; distribution is unlimited 

CODE MAINTENANCE AND DESIGN FOR A VISUAL 
PROGRAMMING LANGUAGE GRAPHICAL USER 

INTERFACE 
 

by 
 

Graham C. Pierson 
 

September 2004 
 
 

 Thesis Advisor:   Mikhail Auguston 
 Second Reader: Scott Coté 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
Sept 2004 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  Code Maintenance and Design for a 
Visual Programming Language Graphical User Interface 
6. AUTHOR(S) Graham Pierson 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE A 

13. ABSTRACT (maximum 200 words)  
 

This work adds new functionality to an existing visual programming environment.  It applies software maintenance 

techniques for use with the Java Language in a Microsoft Windows operating system environment.  The previously 

undocumented application is intended to support programming with executable diagrams.  This application has the potential to 

expand programming access to non-programmers, provide better software documentation and improve software 

maintainability.  It is currently capable of supporting meta-programming tasks such as parsing and compiler building.  The 

11,184 legacy lines of code(LOC) were corrected, extended and documented to support future maintenance using an additional 

957 LOC and changes to 45 LOC. 

 
 
 
 
 
 
 

15. NUMBER OF 
PAGES  

179 

14. SUBJECT TERMS  Code Maintenance, VPL, Visual Programming Language, Software 
Engineering, VisualRigal, Rigal, Graphical User Interface, Meta-programming, Code 
reading, notSerializableException, Software Design 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

CODE MAINTENANCE AND DESIGN FOR A VISUAL PROGRAMMING 
LANGUAGE GRAPHICAL USER INTERFACE 

 
Graham C. Pierson 

Major, United States Marine Corps 
B.S., University of Puget Sound, 1989 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2004 

 
 
 

Author:  Graham Pierson 
 

 
Approved by:  Mikail Auguston 

Thesis Advisor 
 
 

Scott Coté 
Second Reader 

 
 

Peter Denning 
Chairman, Department of Computer Science 

 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 
 
 
 
This work adds new functionality to an existing visual programming environment.  

It applies software maintenance techniques for use with the Java Language in a Microsoft 

Windows operating system environment.  The previously undocumented application is 

intended to support programming with executable diagrams.  This application has the 

potential to expand programming access to non-programmers, provide better software 

documentation and improve software maintainability.  It is currently capable of 

supporting meta-programming tasks such as parsing and compiler building.  The 11,184 

legacy lines of code(LOC) were corrected, extended and documented to support future 

maintenance using an additional 957 LOC and changes to 45 LOC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 vii

TABLE OF CONTENTS 
 
 

I. INTRODUCTION........................................................................................................1 
A. BACKGROUND ..............................................................................................1 
B. PURPOSE.........................................................................................................1 
C. SCOPE, METHODOLOGY AND ASSUMPTIONS ...................................2 

1. Scope......................................................................................................2 
a. Understanding of Current GUI Design....................................2 
b. Understanding of Current GUI Behavior ................................2 
c. Application of the Java Swing Classes to Extend and 

Correct GUI Functionality .......................................................2 
2. Methodology .........................................................................................3 

a. Comment Current Code and Discover Design.........................3 
b. Develop Test Plan......................................................................3 
c. Extend Functionality ................................................................3 
d. Test with Progress .....................................................................3 
e. Develop User’s Manual ............................................................3 
f. Document Existing Design .......................................................3 

3. Assumptions .........................................................................................3 
D. THESIS ORGANIZATION............................................................................4 

1. Chapter I: Introduction.......................................................................4 
2. Chapter II: Background Information and Key Concept Review....4 
3. Chapter III: Implementation of GUI .................................................4 
4. Chapter IV: Conclusion ......................................................................4 
5. Chapter V: Appendixes .......................................................................4 

II. BACKGROUND INFORMATION AND KEY CONCEPT REVIEW..................5 
A. SURVEY OF VISUAL PROGRAMMING...................................................5 

1. History...................................................................................................5 
2. Benefits..................................................................................................6 
3. Risks ......................................................................................................6 

B. VISUAL META-PROGRAMMING LANGUAGE......................................6 
1. Intended Use .........................................................................................6 
2. Icons ......................................................................................................7 

a. Port ............................................................................................7 
b. Connector ..................................................................................8 
c. Stream........................................................................................9 
d. Switch ......................................................................................10 
e. Data Box..................................................................................12 
f. Nested Data Box......................................................................13 
g. Pattern Box..............................................................................14 
h. Nested Pattern Box..................................................................15 
i. Diagram Call ...........................................................................15 
j. Fork .........................................................................................16 



 viii

k. Merge.......................................................................................16 
l. Alternative Pattern ..................................................................17 

3. Application Examples........................................................................18 

III. IMPLEMENTATION OF GUI ................................................................................25 
A. GUI HISTORY...............................................................................................25 
B. CODE READING TOOLS USED................................................................25 

1. Package Search as a Grep Substitute...............................................25 
2. Javadoc................................................................................................25 
3. Simple UML Tool...............................................................................26 
4. Code Tracing for Understanding by Following Instantiations 

and Events...........................................................................................28 
5. Assessing Method Invocation............................................................29 
6. IDE Method List ................................................................................29 

C. DESIGN DOCUMENTATION ....................................................................31 
D. NEW CODE IMPLEMENTATION ............................................................33 

1. Finding Where to Begin.....................................................................33 
2. Execution Path to Steady State Awaiting Event .............................33 
3. Fix for 3 Compiler Errors .................................................................35 
4. Add Proper Nesting Output to Text Interface ................................36 
5. Note on Nested Behaviors..................................................................42 
6. Maintain Connections During Resizing of Data Boxes ..................42 
7. Changes to Allow Saving with Restore as Implemented ................48 
8. Inconsistent Saves or EOF on Open.................................................49 
9. Open with Title Restore.....................................................................50 
10. Clean New...........................................................................................53 
11. Restore Signature...............................................................................53 
12. Showing Nesting with Progressive Thickening ...............................53 
13. Twilight Nesting .................................................................................57 
14. Adding Streams..................................................................................59 
15. Adding Alternative Patterns .............................................................62 

E. TEST PLAN ...................................................................................................64 
1. Assumptions .......................................................................................64 
2. Methodology .......................................................................................64 

a. Black Box Testing ...................................................................64 
b. White Box Testing...................................................................64 

F. TESTING RESULTS.....................................................................................64 
1. Automated Test Results and Corrections ........................................64 
2. Manual Test Results ..........................................................................64 

a. Deleted Nested Box Still Reported in Text File Interface .....64 
b. Diagram Signature is Not Reported in Text File Interface...64 
c. Resize of Elements Other Than Data Boxes Removes 

Connections.............................................................................65 
d. Unable to Change Number of Element Ports ........................65 
e. Diagram Element is Deleted While Adding Another.............65 

G. CORRECTIONS BASED ON TESTING BEHAVIOR.............................65 



 ix

1. Corrections to Deleting Nested Box Behavior .................................65 
2. Correction to Have Diagram Signature Reported in Text File 

Interface ..............................................................................................67 
3. Correction to Change number of Element Ports on Fork, 

Merge and Alternative Pattern.........................................................67 
4. Correction to Prevent Diagram Element is Deletion While 

Adding a Different Element ..............................................................68 

IV. CONCLUSIONS ........................................................................................................71 
A. ASSESSMENT OF IMPLEMENTATION .................................................71 

1. Strengths .............................................................................................71 
a. Defacto Design is Similar to Design Produced by 

Requirements Analysis............................................................71 
b. Support of Equivalence Contract with Java Component 

Abstract Interface....................................................................71 
2. Weaknesses .........................................................................................71 

a. Class Interfaces Not Fully Developed for Extension ............71 
3. Lacks Documentation ........................................................................72 

B. LESSONS RELEARNED .............................................................................72 
1. Formal Design Improves Maintainability .......................................72 
2. Documented Code Improves Maintainability .................................72 
3. Understanding of Design and Requirements Improves 

Extension Solutions............................................................................72 
4. Object Oriented Design Improves Diagram to Interface Link......72 
5. Some Testing is Better Than None ...................................................73 
6. Testing is Necessary to Expose Unexpected Behavior ....................73 

C. FUTURE WORK...........................................................................................73 
1. Update Code .......................................................................................73 
2. Add New VisualRigal Elements........................................................73 
3. Adaptation of VisualRigal to the General Programming 

Domain................................................................................................73 

LIST OF REFERENCES......................................................................................................75 

APPENDIXES........................................................................................................................77 
A. TEST REPORT FOR TESTING PARASOFT MUST HAVE RULES ...77 
B. CHANGES TO ORIGINAL CODE.............................................................80 
C. VISUALRIGAL USER’S MANUAL .........................................................122 
D. REQUIREMENTS ANALYSIS .................................................................127 

INTRODUCTION................................................................................................................131 
PURPOSE OF THE SYSTEM ...............................................................................131 
SCOPE OF THE SYSTEM.....................................................................................131 
DEFINITIONS, ACRONYMS AND ABBREVIATIONS ...................................131 
REFERENCES.........................................................................................................131 
OVERVIEW.............................................................................................................132 

CURRENT SYSTEM ..........................................................................................................132 



 x

PROPOSED SYSTEM ........................................................................................................132 
OVERVIEW.............................................................................................................132 
FUNCTIONAL REQUIREMENTS.......................................................................132 

Vision Statement Excerpt .................................................................132 
Vision Statement Analysis ................................................................133 
Lab Demonstration Analysis ............................................................133 

NONFUNCTIONAL REQUIREMENTS..............................................................133 
4. Implementation ................................................................................133 

SYSTEM MODELS.................................................................................................133 
5. Scenarios ...........................................................................................133 

editElement........................................................................................134 
operateW/oMouse..............................................................................135 
createTestNest ...................................................................................135 
deleteElement ....................................................................................136 
buildComponent ................................................................................136 
generateCodeErroneousDiagram.....................................................139 

6. Use case model..................................................................................139 
runCode .............................................................................................140 
startProgram .....................................................................................140 
displayCurrentNode ..........................................................................140 
loadDiagram......................................................................................140 
saveDiagram......................................................................................140 
GenerateCode ....................................................................................140 
displayError.......................................................................................141 
editdiagram........................................................................................142 
create ................................................................................................142 
resize ................................................................................................150 
move ................................................................................................150 
delete ................................................................................................153 

7. Object model.....................................................................................153 
Entity Objects ....................................................................................154 
Boundary Objects..............................................................................156 
Control Objects..................................................................................157 

8. Dynamic model.................................................................................159 
CreateTestNest Sequence Diagram..................................................159 
CreateDataNode Sequence Diagram................................................160 
displayCurrentNode Sequence Diagram..........................................160 

9. User interface- navigational paths and screen mock-ups.............160 

GLOSSARY..........................................................................................................................161 

INITIAL DISTRIBUTION LIST .......................................................................................163 
 
 



 xi

LIST OF FIGURES 
 
 

Figure 1. Sample Application Screen with Some Elements Present .................................7 
Figure 2. Large Arrows with Dashed Ends Point to Port Icons ........................................8 
Figure 3. Connector Icon...................................................................................................9 
Figure 4. Stream Icon ......................................................................................................10 
Figure 5. Switch Icon ......................................................................................................11 
Figure 6. Data Flow If a>b is True..................................................................................11 
Figure 7. Data Flow If a>b is False .................................................................................12 
Figure 8. Data Box Icons.................................................................................................13 
Figure 9. Creation of a Data Structure Using Nested Data Box Icon .............................14 
Figure 10. Pattern Box Icon ..............................................................................................14 
Figure 11. Nested Pattern Boxes Showing 2 Part Data Structure .....................................15 
Figure 12. Diagram Call Icon............................................................................................16 
Figure 13. Fork Icon..........................................................................................................16 
Figure 14. Merge Icon .......................................................................................................17 
Figure 15. Alternative Pattern ...........................................................................................18 
Figure 16. Parsing Usage of an Alternative Pattern ..........................................................18 
Figure 17. Recursive Factorial Example After [8] ............................................................19 
Figure 18. Recursive Factorial Example in GUI...............................................................20 
Figure 19. Iterative Factorial Example After [8]...............................................................21 
Figure 20. Iterative Factorial Example in GUI..................................................................22 
Figure 21. Function to Build Rational Number Data Structure ........................................23 
Figure 22. Function to Add Rational Number Data Structures.........................................24 
Figure 23. Three Screens of UML Depiction From BlueJ. ...............................................27 
Figure 24. Expected Program Design Based on Requirements Analysis From 

Appendix D......................................................................................................31 
Figure 25. Actual Design of VisualRigal based on Code Examination ............................32 
Figure 26. Thesis Class Extensions...................................................................................33 
Figure 27. Instantiation Order and Source with Location of Event Driven Methods .......34 
Figure 28. Improper Uses of Java Keyword “super” ........................................................35 
Figure 29. Correction to Improper Use of Java Keyword “super”....................................35 
Figure 30. Sample of Graphically Nested Data Boxes......................................................36 
Figure 31. Text File Interface with Original Non-nested Behavior ..................................37 
Figure 32. Original printText() Method with no Provision for Showing Nesting ............38 
Figure 33. New printText() Method Prints Root Boxes and Children Recursively ..........39 
Figure 34. New printNestText() Method Recursively Prints Child Boxes .......................40 
Figure 35. New printTabs() Method..................................................................................40 
Figure 36. Text File Interface with New Nested Behavior ...............................................41 
Figure 37. Element with Connections ...............................................................................43 
Figure 38. Same Element After a Move Operation...........................................................43 
Figure 39. Same Element After Resize Operation ............................................................44 
Figure 40. Unnecessary Recast and Method Call..............................................................44 
Figure 41. New resize() Method Showing Original Method Calls ...................................45 



 xii

Figure 42. Key Port Update Technique in Move Event Chain .........................................46 
Figure 43. New Method moveElementPorts() ..................................................................47 
Figure 44. Method flush() Disabled ..................................................................................49 
Figure 45. State of Diagram When Saved.........................................................................50 
Figure 46. After Deleting Data Box ..................................................................................51 
Figure 47. Immedietly After Opening the Saved Diagram ...............................................51 
Figure 48. Diagram Restore Showing Artifacts on Mode Buttons ...................................52 
Figure 49. Nesting Without Line Thickening ...................................................................54 
Figure 50. Nesting Without Line Thickening ...................................................................55 
Figure 51. New paint() Method to Allow Line Thickness Change ...................................56 
Figure 52. New Method elementTreeLevel()....................................................................56 
Figure 53. Twilight Nesting Example ...............................................................................58 
Figure 54. Cause of Twilight Nesting ...............................................................................59 
Figure 55. Example of a Stream Connector ......................................................................60 
Figure 56. Duplicated Drawing Routine ...........................................................................62 
Figure 57. Example of an Alternative Pattern...................................................................63 
Figure 58. Changes to Element Deletion Routine.............................................................66 
Figure 59. Change to Report Signature .............................................................................67 
Figure 60. Two Possible Branches for Element Deletion .................................................68 
Figure 61. Correction for Inadvertent Deletion When Connecting...................................69 

 
 
 
 
 
 
 

 



 xiii

LIST OF TABLES 
 
 

Table 1. Changes Required to Support Streams ............................................................61 
Table 2. Changes Required to Support Alternative Patterns .........................................63 

 



 xiv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 

 



1 

I. INTRODUCTION  

A. BACKGROUND  

It is commonly acknowledged that even well commented code is not always easy 

to understand.  An investment of time is required to understand even simple 

programming structure.  As a result, supporting documentation has become part of 

deliverable software.  Graphical techniques have been developed to better express 

program design and function.  Universal Modeling Language can be used to provide 

additional information about program design at a glance.  Visual programming offers a 

pictorial paradigm for computer programming.  This technique combines graphical 

technique with formal language meaning to produce a type of executable diagram or 

model.  Several past examples of visual languages include Sun Microsystem’s Java 

Studio, open source Prograph and National Instrument’s LabVIEW.   It is likely the 

explosion of personal computer (PC) users after graphical user interface (GUI) 

introduction may have a parallel in visual programming language usage.  As this 

technique matures toward mainstream acceptance, programming will become accessible 

to a large part of the population.    Graphical techniques also have a well understood 

application for education and would likely support visual programming languages in 

classroom settings. 

B. PURPOSE 

This work is correction and extension of a GUI for a visual programming 

language, more specifically a visual meta-programming language[1], that provides 

visualization of control and data flow while introducing visualization of data structures.  

The task was to add new functionality and fix known errors in an existing application. 

The greater purpose is support of basic research in visual programming languages 

by continuing the implementation VisualRigal (REE-gal), described below.   

[Visual Programming Languages are] stimulated by the following 
premises: 

1. People, in general, prefer pictures over words. 
2. Pictures are more powerful than words as a means of 

communication.  They can convey more meaning in a more concise unit of 
expression.   



2 

3. Pictures do not have the language barriers that natural 
languages have.  They are understood by people regardless of what 
language they speak.[2] 

In practical terms this research supports the following: 

• Greater access to programming for non-programmers, specifically 

application domain experts or customers 

• Generation of visual documentation concurrent with programming, the 

diagrams are executable 

• Improved communication between distant parts of the development team 

perhaps across primary languages 

• More rapid understanding of program structure allowing focus on key 

portions of application 

As an example, a naval flight officer who programs can assist directly in 

prototype development, improving the final products usefulness in combat and 

significantly reducing the development time required.[3] 

C. SCOPE, METHODOLOGY AND ASSUMPTIONS 

1. Scope 

a. Understanding of Current GUI Design 

This work examines the existing design of the VisualRigal program, 

which encompases 45 classes and approximately 10,000 lines of code.  The goal is to 

gather enough information to portray the program design with UML to enable further 

maintenance and extension of the code. 

b. Understanding of Current GUI Behavior 

This work also examines high level behavior of the VisualRigal program.  

The goal is to document sufficient understanding of the program behavior to support 

future work and program use.  Detailed program behavior is also documented for specific 

areas of correction and extension.   

c. Application of the Java Swing Classes to Extend and Correct 
GUI Functionality 

The work primary production is achieved through the application of Java 

classes and language to correct desired behavior and support new functionality.  Because 



3 

the Java language and individual Java Virtual Machines are evolving, there is no 

expectation that this work represents a final solution.  This belief is reinforced by the 

history of the VisualRigal program outlined at the beginning of Chapter III. 

2. Methodology 

a. Comment Current Code and Discover Design 

The intention of this work is to trace program execution enough to correct 

and extend particular functionality.  During this trace code comments will be developed 

that support Sun’s Javadoc functionality.  Additional comments have been developed to 

answer the questions, “Why was this done?” and “Why was this technique used?”  While 

tracing execution, information discovered that contributes to an understanding of 

program structure and design has been translated into UML descriptions 

b. Develop Test Plan 

As an understanding of design and program requirements emerges a test 

plan will be developed that supports requirement fulfillment and likely fault detection.  

c. Extend Functionality 

Functionality has been corrected and extended on a priority bases.  A 

successful change has been completed prior to coding additional changes.  These changes 

are prioritized based on customer requirements and best return on resource investment.  

Best return is defined as greatest functionality increase for likely time invested. 

d. Test with Progress 

Testing has been done at the developer level while coding.  Regression 

testing of test cases and automated suites was also utilized. 

e. Develop User’s Manual 

A basic user’s manual has been created to outline operation and document 

expected behavior of the program.  It is included as an appendix. 

f. Document Existing Design 

The information collected starting with the first step of this work and 

throughout is consolidated in a UML representation of program design. 

3. Assumptions 

Understanding of UML is required for a detailed understanding of program 

design.  Understanding of Java is required for a detailed understanding of code choices 



4 

and changes.  However, a general understanding of the work is accessible to the average 

college graduate. 

D. THESIS ORGANIZATION 

1. Chapter I: Introduction 

Provides a brief overview of the background, purpose and method of this work. 

2. Chapter II: Background Information and Key Concept Review 

Provides a brief history of visual programming and work leading to the current 

work. 

3. Chapter III: Implementation of GUI 

Provides an overview of code maintenance tools and techniques in a Java and MS 

Windows environment.  Additionally, provides a detailed description of program design 

and this work’s corrections and extensions of the program code as well as the 

implemented test plan. 

4. Chapter IV: Conclusion 

Examines changes required as a result of testing, an assessment of the program 

implementation, a review of the research questions and a discussion of likely future work 

with comments on priorities. 

5. Chapter V: Appendixes 

Copies of documentation to supplement understanding of this work, to include:  

original 1.0, commented original 1.1 and extended 2.0 application Java code, raw 

Parasoft JTest Reports and user’s manual. 

 

 
 
 
 
 
 
 
 



5 

II. BACKGROUND INFORMATION AND KEY CONCEPT 
REVIEW 

A. SURVEY OF VISUAL PROGRAMMING 

1. History 

The beginning of modern visual programming languages is credited to Goldstine 

and von Neumann’s work with flow charts.[4]  This familiar paradigm indicates the 

change of control as one follows the lines from node to node, and is more completely 

called control flow charts.  This sort of visual language is classified as a control flow 

language.[5] 

Further development has lead to a dataflow paradigm, popular in embedded 

systems especially for space and communication applications.[6]  Here the flow of data is 

traced from node to node over the lines.  If the node describes control decisions then a 

combination of control flow and data flow is attained.[5]  This two dimensional view is 

the current state of the literature. 

There is discussion of pure visual programming language, that is figures without 

symbols.  In this classification the mixing of diagrammatic elements with symbols, like 

2>4, constitutes a hybrid language.[7]  This view is consistent with current discussion 

regarding the feasibility of model driven programming.[8]  One criticism is that at some 

level coding is required.  This does not have to be a disadvantage.  If a technique 

provides general understanding at a glance and allows the reader to focus on those areas 

of interest quickly to determine perhaps conditional boundaries, it has achieved 

usefulness.   

Spreadsheets are an example of a hybrid language.[5]  There is information 

contained in the representation of row and columns but no one would consider using a 

spreadsheet without using the available symbols.  Graphical representations should be 

used where they make sense.   

GUI component libraries, filled with buttons and selection tools, appear to be 

moving toward standardization and are an example of a specialized hybrid language.[5]  



6 

Graphical techniques used to describe the Boolean expression above are cumbersome and 

cannot compete with the simplicity of basic mathematical expression.   

2. Benefits 

The increased accessibility of programming has already been discussed as a 

potential advantage for visual languages.  However, the professional could benefit from 

the creation of accessible documentation at the same time they are building the program.  

If an application is built of executable diagrams, the visual code can help serve as a 

reference for future maintenance and current turnover on a project. 

3. Risks 

As with any language there is uncertainty concerning the relationship between 

what is coded and what is compiled.  There is an implied contract that written code will 

execute with fidelity to written structure.  Likewise, there is an expectation that the 

execution described in a diagram will perform consistent to the graphical representation.  

I call this expectation for equivalence between the graphical and logical representation 

the equivalence contract.   

If visual programming becomes mainstream, how will vision impaired 

programmers work?  Graphical methods are the darling of the majority.  Are there 

interface options to support the vision minority?  Will these options support the click and 

drag GUI paradigm?  This work does not address these questions but points out the 

implications here. 

B. VISUAL META-PROGRAMMING LANGUAGE 

1. Intended Use 

A graphical extension of the University of Latvia’s RIGAL, a textual meta-

programming language, VisualRigal is a domain specific language with graphical 

techniques that can be applied to a general programming visual language.  It is 

considered a visual meta-programming language.  That is, it is a programming language 

for manipulating and describing programming languages.  Common applications for this 

type of language are compilers and parsers.[1] 

 



7 

It is this application of the language that provides a look at VisualRigal’s new 

paradigm, visualization of data structure.  VisualRigal provides control flow and data 

flow, as is now common, but introduces a simple graphical syntax for describing atomic 

data, lists and tree structures. 

VisualRigal is composed of a GUI, a parser and a compiler.  The compiler and 

parser are already fully implemented.  The current work is the maintenance and extension 

of the GUI which produces a text file interface for the parsers consumption.  Parser 

output is compiled and is then executable. 

2. Icons 

The language is fully described in the reference but a low level description of the 

major icons follow. 

 
Figure 1.   Sample Application Screen with Some Elements Present 
 

a. Port 

A junction box for data.  Ports on the left of an object are input ports that 

is data enters the icon through that port.  Ports on the right of an object are output ports.  

This convention of in or out is muddled when referencing connectors since data flows out 

of a diagram “input” port and into the connector.  The filled in port on the lower right of 

an icon is a fail port whose use is optional. 



8 

 

 
Figure 2.   Large Arrows with Dashed Ends Point to Port Icons 

 
b. Connector 

A data pipe which allows only one data element at a time. 

 

 

 

 

 



9 

 
Figure 3.   Connector Icon 

 
 

c. Stream 

A data pipe which allows a continuous flow of data, as in UNIX pipes. 

 



10 

 
Figure 4.   Stream Icon 

 
 

d. Switch 

A conditional or if-then statement.  Uses a train track switch metaphor to 

depict data-flow based on truth of Boolean statement contained in the icon.  As with all 

elements, can have 1 to many ports.  All three port-sides of a switch have the same 

number of ports.  All data entering the left side of the switch is available at the right side 

ports if the statement is true, or available at the bottom ports if the statement is false. 

 



11 

 
Figure 5.   Switch Icon 

 

 
Figure 6.   Data Flow If a>b is True 

 



12 

 
Figure 7.   Data Flow If a>b is False 

 
 

e. Data Box 

Icon to input data into data pipe.  May also hold a C type operator, +, *, 

++, etc. and perform primitive mathematics using these symbols.  In the example below, 

the smaller data box outputs the integer 5 on the first output port, while the larger outputs 

the sum of the two input values on the second output port. 

 



13 

  
Figure 8.   Data Box Icons 

 
 

f. Nested Data Box 

Represents the building block of a data structure.  The structure can be 

passed through a data pipe connected to the outer Box.  Can be used to assemble lists and 

trees.  Provides visualization of data structure. 

 



14 

 
Figure 9.   Creation of a Data Structure Using Nested Data Box Icon 
 
 

g. Pattern Box 

Performs pattern matching on data. 

 

 
Figure 10.   Pattern Box Icon 



15 

h. Nested Pattern Box 

Used to deconstruct the data structures assembled in the Nested Data 

Boxes.  Provides visualization of data structure. 

 

 
Figure 11.   Nested Pattern Boxes Showing 2 Part Data Structure 

 
 

i. Diagram Call 

Allows reuse of diagram for subroutines or recursion. 



16 

 
Figure 12.   Diagram Call Icon 

j. Fork 

Duplicates data item. 

 
Figure 13.   Fork Icon 

k. Merge 

Merges data streams into single stream 



17 

 

 
Figure 14.   Merge Icon 

 

l. Alternative Pattern 

Used for pattern matching in support of parsing, similar to a switch 

statement.  Starts looking for a pattern match at the top port.  The first port with a 

successful match consumes the input and moves control along the route defined by the 

pattern matched.  The example in the second figure will take an input stream and send the 

data following an integer to the first ouput port, following a rational number to the second 

ouput port and anything else to the fail port. 



18 

 
Figure 15.   Alternative Pattern 

 

 
Figure 16.   Parsing Usage of an Alternative Pattern 

 
 

3. Application Examples 

Examples are provided in the following figures.  The first four define factorial 

functions, taking an integer input N and producing an integer N!.  The first figure shows a 



19 

recursive function demonstrating the ability of VisualRigal to describe recursive 

functions.  The second figure is an equivalent GUI diagram.  Note the use of a single port 

switch and data boxes with a mathematical operator in each figure.  The third is an 

equivalent iterative solution.  This is followed by another GUI equivalent.  The structure 

of the diagram suggests the existence of parallelism in the program structure.  This 

additional information about the program comes with the visual representation. 

 
 

 
Figure 17.   Recursive Factorial Example After [8] 

 

#factorial

*

N 
N <=1 1

#factorial: int  int 

-- 



20 

 
Figure 18.   Recursive Factorial Example in GUI 



21 

 
Figure 19.   Iterative Factorial Example After [8] 

 

--  

1 * 

N > 1

N

#factorial: int -> int



22 

 
Figure 20.   Iterative Factorial Example in GUI 

 



23 

The next diagrams demonstrate the visibility of data structure in VisualRigal.  The 

first constructs a eational number data structure out of two input integers.  The next figure 

takes two such data structures and adds them correctly.  In this addition figure the 

simpiler path is when the denominators are equal.  This path is represented by the top half 

of the diagram and is very easy to follow.  The second case is the lower path, when the 

denominators are not equal.  The diagram is harder to follow at this point giving a good 

indication of the complexity of the logic involved.  We instinctively recognize the 

potential confusion at this point of the program.  We are focused at a point in the routine 

that needs carful attention to correctness or is a likely source of a fault. 

 
Figure 21.   Function to Build Rational Number Data Structure 

 



24 

 
Figure 22.   Function to Add Rational Number Data Structures 



25 

III. IMPLEMENTATION OF GUI 

A. GUI HISTORY 

The VisualRigal GUI was originally implemented by Mr. Abu Islam in 2002.  Mr. 

Islam is a professional programmer who’s work was proceeding nicely when a new java 

release disabled the save and restore feature of the GUI.  Mr. Islam was unable to detect 

the new fault in his implementation before his time was over.  His effort did produce a 

workable design implementation with over 10,000 lines of code. 

The code indicates an experienced Java programmer using advanced techniques 

supported by the Java Swing and AWT classes.  His use of self commenting code is 

generally excellent, providing signposts for the traveler who follows him.  The code does 

not support standard Javadoc comments, creating difficulty when trying to maintain or 

extend this application. 

B. CODE READING TOOLS USED 

The main intent of the present work was production of a maintainable program 

and feature extension.  Finding the best tools for a particular task was never intended.  

This represents the fastest way to progress at the given moment.  With some exposure to 

particular tools or work on a UNIX based system could undoubtedly provide a faster pace 

of production.  However, the methods listed here avoided a common project pitfall, 

getting caught up in tools rather than production. 

1. Package Search as a Grep Substitute 

The first step toward understanding any program, without other documentation, 

would be to start at the beginning.  For a C-based language this means finding the main 

method.  There is a painful story concerning the search through the 45 program classes 

that will not be related further.  In any event, the preferred method for this phase is a 

search over all files for the main signature.  This can be accomplished with an IDE path 

search or MS Windows search utility.  This technique is simply the equivalent of an 

UNIX grep command. 

2. Javadoc 

Javadoc, when properly supported by well commented code, can be an excellent 

documentation resource.  Javadoc is, however, dependent on the quality of comments and 



26 

transparency of method and class naming.  If the class containing the main method does 

not identify itself with this fact, “ApplicationMain” for example, a tedious search 

situation ensues.  The main method will be listed with the methods of one of the classes 

in an operational java program, but which one?   

There is less text to search through in this case.  The standard formatting of 

Javadoc even makes it obvious where to look, in the methods section alphabetically 

listed.  But must the author once again open each classes Javadoc hoping to get lucky?  

Additionally, he do not know how to search HTML pages. 

The Javadoc hierarchy is of some utility, showing inheritance by indentation.  

Assuming that main will be found in a top level class there were still 32 classes to search 

with this rule in mind.  Not a promising start to a work in understanding approximately 

10,000 lines of code.  The author’s solution is presented below under New Code 

Implementation. 

3. Simple UML Tool 

BlueJ is an open source Java IDE design for use by students during there first 

exposure to Java.  One of its features is the representation of all classes in the target file 

in UML form.  BlueJ shows inheritance relationships and class uses.  Though not a 

complete UML representation of the code, the class uses provide additional information 

the Javadoc inheritance structure does not.   

 

 

 



27 

 

.

 
Figure 23.   Three Screens of UML Depiction From BlueJ. 

 

 



28 

There are negative side-effects to BlueJ’s use for this purpose.  BlueJ explicitly 

removes package statements from Java packages.  This change makes the code unusable 

for IDEs requiring packages. 

BlueJ also adds an additional file to the folder.  BlueJ opens to the same state at 

which it was exited.  This additional file probably records this state.  In any event, this 

file is not recognized by other IDEs making it more of a benign side effect than anything 

else. 

The UML diagram presented by BlueJ must be formatted by hand.  There is no 

provision for the “pretty printing” of this information nor printing.  Thanks to the state 

saving feature, once laid out for readability the work is done provided you maintain the 

particular file that was formatted.  Since you cannot normally use BlueJ and another IDE 

on the same package this reformatting can become tedious. 

4. Code Tracing for Understanding by Following Instantiations and 
Events 

Once the main method is located a traditional hand-trace of the code can begin.  

There are likely as many techniques for code tracing by hand as there are code tracers.  

The author has, in the past, used a trace utility to print out the code line reference number 

as it executes.  This can be a useful tool for debugging spaghetti code, but it was found 

unnecessary for this event oriented program.   

The author’s tracing method is presented here for illustration of the maintenance 

process, working from a printout of the class containing the main method and tracing 

through a print out of any instantiated code as necessary.  It is his habit to annotate with 

pencil, his notions of code purpose as he goes.  In fact, these notes became the comments 

to document the code.  In this manner these hard copies immediately become usable 

documentation for the code and commenting the code becomes a typing exercise, perfect 

for one’s less cognitive periods. 

Examination of classes as they instantiate develops an understanding of program 

state at a given moment.  In the case of an event driven program, these classes are likely 

to contain the event driven methods allowing focus on a relatively small subset of the 

code for initial understanding and maintenance.  As Spinellis says, don’t try to 



29 

understand all of the code, only that portion effected by the proposed change.[10]  The 

execution must be followed until a steady state is reached.  Specifically the end of the 

main method or event driven methods may be overlooked in a program with multiple 

active event listeners, as is the case here.   

At this point correction and extension of the code can begin.  Once the event 

listeners are identified and their related event methods found, the program must be traced 

in terms of response to events.  It is now time to examine particular behavior that is 

incorrect by tracing from the event method to completion, presumably another steady 

state awaiting the next event.  If extension of the code is the current goal, the initiating 

event must be traced unless it has no legacy use.  When the new program behavior is 

initiated by an event method not previously used the trace is unnecessary.  If this 

initiating event is currently used, a mouse click for example, the event should be traced to 

completion in order to determine where the new behavior would be best inserted.   

5. Assessing Method Invocation 

Once it is determined that an existing method must be modified, it is necessary to 

asses the impact of the change.  Are there unintended side-effects from this change?  Will 

legacy use of this method provide the expected response?  A first step towards answering 

these questions is to examine all uses of this method. 

A package search for the first part of the method signature, “methodName(“ can 

provide a list of method invocation occurrences.  Heavy use of overloaded methods for 

polymorphic purposes can increase the complexity of this method.  In such a case a more 

elaborate tool may be needed, one that can associate parameter and variable types to 

completely define the method signature. 

6. IDE Method List 

Both IDEs used, NetBeans and JBuilder 5.0, have a window that alphabetically 

lists the methods of the class currently selected.  This window can be useful for quickly 

locating a class method.  By selecting the method name in this window, the code listing 

displays the portion of code beginning with the first line of the method listing.  There are 

some disadvantages to this technique.   



30 

The methods may be listed alphabetically by access type along with variables and 

other foundational information about the class.  If this is the case, there may be a delay in 

realizing you are looking in the wrong access type list for your method of interest.  

Private methods were hard to find listed at the end with public methods listed at the 

beginning and variables listed in between. 

This list does not provide any information about method inheritance.  If a method 

is defined higher in the class inheritance hierarchy you may be better off using a package 

search to find this method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

C. DESIGN DOCUMENTATION 

A requirements analysis of this application was conducted producing an expected 

program design prior to code examination, shown below. 

Program

Diagram

Node

Connector
DataNode

Switch

Merge

Fork

DataObjectPattern

Data Flow

Stream

ruleCall

Port

*

*

Association

ConnectorNode

Male

Female

AltenativePattern

*

2

 
Figure 24.   Expected Program Design Based on Requirements Analysis From Appendix D 

 
 
 
 



32 

Examination of the code has produced an understanding of the actual design 

implementation shown below. Note the grouping of classes by dashed and solid boxes:   

Constants, Utility Classes and Unused Code.  The unused code is thought to containe 

classes that were original experiments for current element classes and unfinished work on 

classes that could become elements if the work was finished. 

Application

«datatype»Element[]

ApplicationFrame
ConstantsRigalConstantsElement

RigalFrame

ConstantsStatus

ToolBoxElementsAndActions

UtilRigal

UtilGraphicsEndsWith

ApplicationFrameAboutBox

ElementContainer

Utility Classes

Constants

1

1 1 1

1

1

1

1

11

1

1

1
1

11

DialogInfo

DialogContainerAndFrame

RigalFrameOrganizer

FileParser

DialogElementProperties

MultiLineLabel
1

1

11

1

1

1
1

1

1

1 11

1

ElementPortManager

ElementContainerPort

DialogPortCaption

ElementContainerWindow

ToolBoxSwing

1 1

Element Port

ElementContentRenderer

DialogPanelFixed
DialogPanelVariable

1

1

1 1

1

1

1
1

1

1

DialogPanelManger

ElementTriangle

1

1

1
1

1

1

DataBox Decision

ElementData

GraphPort

Square

Original 
Experiments?

ElementSwitch

ElementMerge

ElementTriangleOut

ElementTriangleIn

ElementPattern

ElementInputOutput

ElementBitmap
ElementDiagramCall

ElementFork

ElementConnector

Primary Elements

Unfinished 
Work?

Unused Code

 
Figure 25.   Actual Design of VisualRigal based on Code Examination 



33 

Extension of the code by the ElementStream and ElementAltPattern classes has 

produced the following modified design. 

 
ElementConnector ElementStream

ElementFork ElementAltPattern

 
Figure 26.   Thesis Class Extensions 

 

D. NEW CODE IMPLEMENTATION 

1. Finding Where to Begin 

With all of the tools discussed available, except the package search or grep 

equivalent, getting started was the most daunting part of the task.  With the intention of 

limiting the amount of random search, the author used the BlueJ  UML diagram to begin 

manually sorting the classes.  Classes without inheritance where set off in a separate 

group, per figures 1-3.  There emerged 3 inheritance trees rooted in the following:  

RigalFrame, ElementContainer and Element.  None of these roots contained main() and 

their children where unlikely to, so some of the classes were eliminated from the search.  

At this point the Application class stood out as having no indicated uses.  That is no other 

class referenced Application as witnessed by the lack of use arrow heads.  Problem 

solved, Application class contains the main() method. 

2. Execution Path to Steady State Awaiting Event 

Examination of Application class shows the constructor creating an Application 

Frame for unknown purposes.  Since the constructor will not execute until an instance of 

Application is created this may be meant to support a Java applet, but ApplicationFrame 

is not fully developed for any purpose. 

Execution path is as follows:  Application.main() creates a RigalFrame  

RigalFrame() creates an ElementContainer attribute   Application.main()  steady 

state awaiting event.   

 



34 

 
Figure 27.   Instantiation Order and Source with Location of Event Driven Methods 

 

Java listeners were found in RigalFrame and ElementContainer, these define the 

program interface for this event driven program.  RigalFrame contains the menu item 

listeners and ElementContainer contains the remaining listeners, diagram area and mode 

button listeners.  

Application RigalFrame 

ElementContainer 

Menu Listeners 

Event Listeners 
Mode Listeners 



35 

3. Fix for 3 Compiler Errors 

The 1.0 code would not compile with a Sun standard compiler due to 3 non-

standard uses of the keyword “super” in class ElementPortManager.   

 
  public Element getElement() 
  { 
    return super; 
  } 
 
   public void move(int x, int y) 
   { 
      // move mother element 
      if (super.getNested()){ 
          moveNestedElement(super, x, y); 
          // System.out.println("called moveNestedElementOnly()"); 
      } 
      else if (!super.getNested()){ 
          moveNotNestedElement(super, x, y); 
          // System.out.println("called moveNotNestedElementOnly()"); 
      } 
   } 

Figure 28.   Improper Uses of Java Keyword “super” 
 

  public Element getElement() 
  { 
    return (Element) this;// GCP changed super() to (Element) this 
  } 
 
   public void move(int x, int y) 
   { 
      // move mother element 
      if (super.getNested()){ 
          moveNestedElement((Element) this, x, y);// GCP changed from super() to 

(Element) this 
          // System.out.println("called moveNestedElementOnly()"); 
      } 
      else if (!super.getNested()){ 
          moveNotNestedElement((Element) this, x, y);// GCP changed from 

super() to (Element) this 
          // System.out.println("called moveNotNestedElementOnly()"); 
      } 
   } 
Figure 29.   Correction to Improper Use of Java Keyword “super” 



36 

Evidently the Borland compiler allow the use of “super” to denote the appropriate 

super class for the situation, since the code did compile with JBuilder 5.0.  Not only was 

this inconvenient for use with other compilers, IDEs and tools; but it is poor practice.  

Leaving the compiler to figure out the appropriate casting strikes the author as risky.  It is 

much better to explicitly state the intended cast so there is no doubt what is produced by 

the compiler.  This change was made to the code as shown in figure 5. 

4. Add Proper Nesting Output to Text Interface 

Nested data boxes must translate to nested text representations.  The body of a 

nested data box, label followed by information enclosed by parenthesis, must appear 

within the parenthesis of the parent data box.  Nested data boxes in the 1.0 code printed 

out one after another as if none of them were nested, all occupying the same level as 

children of the diagram and no other box.   

 
Figure 30.   Sample of Graphically Nested Data Boxes 

 
name       
 
input_ports  ( p10 p11) 



37 

output_ports ( p12) 
onfail_port    p13 
 
data_box ( 
   inp_port_names ( null null) 
   inp_port_ids ( p20 p21) 
   out_port_ids ( p22) 
   expr Outer 
) 
 
 
data_box ( 
   inp_port_names ( null null) 
   inp_port_ids ( p30 p31) 
   out_port_ids ( p32) 
   expr 1 
) 
 
 
data_box ( 
   inp_port_names ( null null) 
   inp_port_ids ( p40 p41) 
   out_port_ids ( p42) 
   expr 2 
) 
 
 
data_box ( 
   inp_port_names ( null null) 
   inp_port_ids ( p50 p51) 
   out_port_ids ( p52) 
   expr 1.1 
) 
 
 
data_box ( 
   inp_port_names ( null null) 
   inp_port_ids ( p60 p61) 
   out_port_ids ( p62) 
   expr 1.2 
) 
 
 
data_box ( 
   inp_port_names ( null null) 
   inp_port_ids ( p70 p71) 
   out_port_ids ( p72) 
   expr 1.3 
) 
 
 
data_box ( 
   inp_port_names ( null null) 
   inp_port_ids ( p80 p81) 
   out_port_ids ( p82) 
   expr 2.1 
) 
 
 
data_box ( 
   inp_port_names ( null null) 
   inp_port_ids ( p90 p91) 
   out_port_ids ( p92) 
   expr 2.2 
) 

Figure 31.   Text File Interface with Original Non-nested Behavior 



38 

Much of the code needed for nested boxes was already implemented.  I suspect 

Mr. Islam was preoccupied with the save feature, discussed later, and saw no need to 

complete this feature without the ability to save and restore diagrams.   

 

  public void printText(PrintStream ps) 
  { 
     System.out.println("printText called from ElementData"); 
     ps.println(""); 
     ps.println("data_box ("); 
     ps.println("   inp_port_names (" + getInputPortNames() + ")"); 
     ps.println("   inp_port_ids (" + getInputPortIds() + ")"); 
     ps.println("   out_port_ids (" + getOutputPortIds() + ")"); 
     ps.println("   expr " + this.getCaption()); 
     ps.println(")"); 
     ps.println(""); 
  } 

Figure 32.   Original printText() Method with no Provision for Showing Nesting 



39 

The ElementData.printText() method was modified to only print root data boxes 

and call the new ElementData.printNestText() method for each of the children of the root 

box.   

  // print all parent data boxes, call nested print if needed 
  public void printText(PrintStream ps) 
  { 
      if(!this.getNested()) 
      { 
          Vector vMyChildren = new Vector(); 
          vMyChildren = getNestVector(); 
           
          System.out.println("printText called from ElementData"); 
          ps.println(""); 
          ps.println("data_box ("); 
          ps.println("   inp_port_names (" + getInputPortNames() + ")"); 
          ps.println("   inp_port_ids (" + getInputPortIds() + ")"); 
          ps.println("   out_port_ids (" + getOutputPortIds() + ")"); 
          ps.println("   expr " + this.getCaption()); 
          for(int i = 0; i < vMyChildren.size() ; i++){ 
              ((ElementData) vMyChildren.elementAt( i ) ).printNestText(ps,1);; 
          } 
          ps.println(")"); 
          ps.println(""); 
      } 

  } 
Figure 33.   New printText() Method Prints Root Boxes and Children Recursively 
 



40 

The ElementData.printNestText() is a copy of the current printText() method 

without the root-only restriction.  This has the effect of recursively calling 

printNestText() for as many level of nodes as necessary. 

//recursively print nested children, tabing based on current layer 
  public void printNestText(PrintStream ps, int numberOfTabs) { 
      Vector vMyChildren = new Vector(); 
      vMyChildren = getNestVector(); 
           
      ps.println(""); 
      printTabs(ps, numberOfTabs); 
      ps.println("data_box ("); 
      printTabs(ps, numberOfTabs); 
      ps.println("   inp_port_names (" + getInputPortNames() + ")"); 
      printTabs(ps, numberOfTabs); 
      ps.println("   inp_port_ids (" + getInputPortIds() + ")"); 
      printTabs(ps, numberOfTabs); 
      ps.println("   out_port_ids (" + getOutputPortIds() + ")"); 
      printTabs(ps, numberOfTabs); 
      ps.println("   expr " + this.getCaption()); 
      for(int i = 0; i < vMyChildren.size() ; i++){ 
          ((ElementData) vMyChildren.elementAt( i ) ).printNestText(ps , 

numberOfTabs + 1 ); 
      } 
      printTabs(ps, numberOfTabs); 
      ps.println(")"); 
      ps.println(""); 
  } 

Figure 34.   New printNestText() Method Recursively Prints Child Boxes 
 

An additional method, printTabs(), was added to increase readability by showing 

nesting with indentation, as is common in coding style conventions.  The method simply 

prints the number of tabs passed as a parameter.  printText() calls this with a value of 1.  

printNestText() has an additional parameter to pass this value, as this method recurses it 

increments the numberOfTabs by 1. 

//prints given number  of 3 space tabs to stream 
  public void printTabs( PrintStream ps,int numberOfTabs) { 
      for(int i = 0 ; i < numberOfTabs ; i++ ){ 
          ps.print("   "); 
      } 
  } 

Figure 35.   New printTabs() Method 
name       



41 

 
input_ports  ( p10 p11) 
output_ports ( p12) 
onfail_port    p13 
 
data_box ( 
   inp_port_names ( null null) 
   inp_port_ids ( p20 p21) 
   out_port_ids ( p22) 
   expr Outer 
 
   data_box ( 
      inp_port_names ( null null) 
      inp_port_ids ( p30 p31) 
      out_port_ids ( p32) 
      expr 1 
 
      data_box ( 
         inp_port_names ( null null) 
         inp_port_ids ( p50 p51) 
         out_port_ids ( p52) 
         expr 1.1 
      ) 
 
 
      data_box ( 
         inp_port_names ( null null) 
         inp_port_ids ( p60 p61) 
         out_port_ids ( p62) 
         expr 1.2 
      ) 
 
 
      data_box ( 
         inp_port_names ( null null) 
         inp_port_ids ( p70 p71) 
         out_port_ids ( p72) 
         expr 1.3 
      ) 
 
   ) 
 
 
   data_box ( 
      inp_port_names ( null null) 
      inp_port_ids ( p40 p41) 
      out_port_ids ( p42) 
      expr 2 
 
      data_box ( 
         inp_port_names ( null null) 
         inp_port_ids ( p80 p81) 
         out_port_ids ( p82) 
         expr 2.1 
      ) 
 
 
      data_box ( 
         inp_port_names ( null null) 
         inp_port_ids ( p90 p91) 
         out_port_ids ( p92) 
         expr 2.2 
      ) 
 
   ) 
 
) 

Figure 36.   Text File Interface with New Nested Behavior 



42 

The Element class represents both a generic element and a nested generic element 

for Visual Rigal.  It contains enough information to construct a logical tree for nested 

elements, though strictly only the data boxes and patter boxes may be nested and then 

only with like kind.  Element.bNested serves as a nested flag to differentiate the 

condition.  Element.iNestElementID provides the root-ward link to the parent by 

providing its element identification number.  Element.vNestVector provides the leaf-

ward connection by containing the element identification number of all immediate 

children, those one level down.  Element.bHasChild provides a flag to indicate the 

presence of children.  This last seems redundant, since we can achieve an equivalent 

result using !( Element.vNestVector.isEmpty() ).  However, this option is awkward and 

so less maintainable.  The bHasChild increases understanding. 

Control flow for nesting a data box:  ElementContainer.mouseDown()  

ElementContainer.nestDataBox()  ElementContainer.processNestedElement() 

Equivalent ElementContainer.nestDataBox() has only the functional difference of 

calling ElementContainer.processNestedElement() from 

ElementContainer.addDataBox(). 

5. Note on Nested Behaviors 

Most of the desired nesting behavior were implemented but were not evident due 

to lack of documentation.  It takes significant experimentation or code tracing to 

determine how a correctly nested box is entered into the diagram.  Because there is no 

visible difference between overlapping and nested boxes without trust in the program 

there is little willingness to make the investment required for understanding.   

6. Maintain Connections During Resizing of Data Boxes 

When an element having connections, as in figure 13 represented by thin arrows, 

is moved the connectors redraw based on the position of the element appearing to stretch 

in order to accommodate the motion.  When a data box is resized, the connectors 

disappear requiring each connection to be restored by hand.  The resize operation should 

have similar behavior to the move operation.   



43 

 
Figure 37.   Element with Connections 

 

 
Figure 38.   Same Element After a Move Operation 

 



44 

 
Figure 39.   Same Element After Resize Operation 

The move event chain and the resize event chain were examined for differences.  

The events diverge in the ElementContainer.mouseDrag() method based on the particular 

state that is current.  The Element is recast as an ElementPortManger and 

ElementPortManager.resize() is called.  This an empty method declaration that is meant 

to be overridden by each element’s resize().  A cleaner interface could be achieved, and 

nothing lost, by not recasting the element and calling the resize method directly. 

 
     case ConstantsStatus.RESIZE: 
      { 
        // System.out.println(eElement.getDebugString()); 
        // System.out.println("Inside mouseDrag(), ConstantsStatus.RESIZE."); 
 ElementPortManager epmLocal = null; 
 if (eElement instanceof ElementPortManager) 
        { 
          // System.out.println("RESIZE condition met..."); 
   epmLocal = (ElementPortManager) eElement; 
   epmLocal.resize(Math.abs(x-matchpoint.x), Math.abs(y-matchpoint.y)); 
   repaint(); 
          // System.out.println("RESIZE completed, repaint() executed..."); 
 } 
      } 
      break; 

Figure 40.   Unnecessary Recast and Method Call 



45 

 
  public void resize (int width, int height) 
  { 
    … 
    //cleanAllPorts();// GCP strips connectors, remove 
    //updateElementPorts();// GCP redraws ports, remove but use 
 
    moveElementPorts();// GCP new method 
  }//end resize() 
Figure 41.   New resize() Method Showing Original Method Calls 

The resize event explicitly deletes all connectors attached to this element.  After 

which, it replaces all ports with new port instances in ElementData.updateElementPorts().  

This method is present in each sub-class of ElementPortManager and is used to initialize 

each element.  This seems like overkill, but Mr. Islam programming skill advocates for 

this being an intermediate step using existing code to get resize started.  Once the save 

and restore bug arose, finishing resize would be low on the priority list.  There certainly 

exists code to support correct behavior for the move event that I used with simple 

modification to change the resize behavior.   

In contrast the move event chain uses a loop to translate each port on the element 

using the change in coordinates reported by the mouse event and Port.translate(), which is 

based on the Java Point.translate().  When the port moves the connection end points are 

updated by the next redraw since the ports define the end points.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



46 

   public void moveNotNestedElement(Element eParent, int x, int y) 
   { 
      // System.out.println("**** called moveNotNestedElement()"); 
      int difx, dify; 
      difx = x - ptStart.x; 
      dify = y - ptStart.y; 
      Polygon polyTemp = null; 
 
      // move mother element 
      eParent.translate(difx, dify); 
       for (int i=0; i<getNoOfPortsOnElement(); i++) 
        { 
          aPortsOnElement[i].translate(difx,dify); 
        } 
 
      polyTemp = new Polygon(getElementPolygon().xpoints, 
                              getElementPolygon().ypoints, 
                               getElementPolygon().npoints); 
 
      setElementPolygon(polyTemp); 
 
      // move children elements, if available 
      if (eParent.hasChild()){ 
        moveElementChildren(eParent, difx, dify); 
        // System.out.println("called moveElementChildren()"); 
      } 
   } 

Figure 42.   Key Port Update Technique in Move Event Chain 

 

The quick fix therefore was to remove cleanAllPorts() and updateElementPorts() 

method calls from the resize event loop and replace them with a new method.  The new 

method, ElementData.moveElementPorts(), is a modified copy of the key move event 

loop method, ElementPortManager.moveNotNestedElement(), figure 18.  This method 

translates all parts of an element on the same change vector.  Because of this it can exist 

at parent class level.  For a resize event there is no common translation of each point.  

The relative position of each port changes and this relative position is defined in each 

subclass of ElementPortManger.  For this reason, moveElementPorts() must join 

updateElementPorts() as a required method for all subclasses of ElementPortManger. 

 
 
 



47 

  // new method;  refit of updateElementPorts() 
  //   Used loop interior from MOVE loop, traced from 
  // ElementContainer.mouseDrag() 
  // case ConstantsStatus.MOVE_ELEMENT: leading to 
  // ElementPortManager.moveNotNestedElement(), 
  // which is -->aPortsOnElement[i].translate(difx,dify); . 
  //   The point calculation from updateElementPorts(), determines 
  // the correct port position. 
  //   Translate uses a difference in position vice a position 
  // requiring trading .move() for .tranlate() . 
  public void moveElementPorts() 
  { 
    int iInputPortOffset = height/(iNoOfInputPorts+1); 
    int iOutputPortOffset = height/(iNoOfOutputPorts+1); 
    int iInputIndex=0, iOutputIndex=0; 
 
    // insert new ports 
    for(iInputIndex=0; iInputIndex<iNoOfInputPorts; iInputIndex++) 
    { 
      // iInputIndex represents the portNum and idNo represents the parent Element 

on which the ports belong 
      // cleanPort(iInputIndex); 
      //aPortsOnElement[iInputIndex] = new 

Port(ptStart.x,ptStart.y+(iInputPortOffset*(iInputIndex+1)),iInputIndex, 
      //                                idNo,ConstantsRigal.iOUTPUT_PORT_TYPE_ID); // 

strips ports 
      //aPortsOnElement[i].translate(difx,dify);// GCP need to use move 
      

aPortsOnElement[iInputIndex].move(ptStart.x,ptStart.y+(iInputPortOffset*(iInputIndex+
1)));// GCP coordinates defined in updatePorts() 

    } 
     
    for(iOutputIndex=0; iOutputIndex<iNoOfOutputPorts; iOutputIndex++) 
    { 
       //aPortsOnElement[iInputIndex+iOutputIndex] = new 

Port(ptStart.x+width,ptStart.y+(iOutputPortOffset*(iOutputIndex+1)), 
       //                                           

iInputIndex+iOutputIndex,idNo,ConstantsRigal.iINPUT_PORT_TYPE_ID); // strips 
ports 

       
aPortsOnElement[iInputIndex+iOutputIndex].move(ptStart.x+width,ptStart.y+(iOutputP
ortOffset*(iOutputIndex+1)));// GCP as above 

      iInputIndex = 0; iOutputIndex = 0; 
  } 

Figure 43.   New Method moveElementPorts() 



48 

Because of this difference the translate call is replace by a move call.  Port.move() 

is based on the Java Point.move() which changes the point coordinates to those given as 

arguments.  But which new coordinates should be passed to move()?  These were 

determined by updateElementPorts(), which needed to initially define these ports.   In this 

version these formulas were copied from updateElementPorts() and pasted into the move 

invocation of moveElementPorts().  This solution is expedient but a poor one for 

maintainability.  The formulas should be removed from both methods and made into one 

or more methods.  This would centralize the behavior without which action the formula 

would have to be changed in two places, a recipe for disaster if only one change were 

made.  This correction is currently future work. 

7. Changes to Allow Saving with Restore as Implemented 

The original development of this interface was progressing nicely when a new 

release of Java disabled the save functionality.  With Java 1.4.2_02 saving created a 

sun.io.appContext.notSerializableException and failed to save any information but did 

create the desired file to save into.  A subsequent open command returned an EOF 

exception due to nothing being saved to the file initially.  Both of these exceptions were 

only visible within an IDE since they were reported by a system.println statement.  A 

user running the program directly would only find themselves unable to open a 

previously saved diagram with no explanation.   

A sun.io.appContext.notSerializableException appears to mean system dependent 

serializable exception.  No documentation could be found on the Sun public web site but 

forum discussions requested help for these errors, which occurred after updating the users 

java runtime environment, are dated September ‘03.  There were no further discussion 

and no answers posted.  After failing to find a solution from Sun and by examination of 

the code for obvious problems in the save event loop the author resorted to 

experimentation.   

Achieving success with the Sun java tutorial class SerializationDemo, a modified 

version of this class was inserted into the program package to successfully save an 

instance of an ElementContainer.  Using the modified SerializationDemo as a foundation 

steps from the program save loop were added until it broke.  This happened when the 

program tries to make method calls to a FileDialog meant for save operations.  This lead 



49 

to belief there was a side effect to the method calls.  Without this comparison experiment 

there never would have suspicion of the FileDialog methods. 

With the many deprecated classes present in the program, there was a suspicion 

updating to a JFileChooser would help.  It did not, the same situation remained.  Since 

appContext, according to a google search, relates to the particular platform java virtual 

machine, it was suspected the context was not serializable.  There was no desire to save 

the context but what if the context was somehow attached or related to the object being 

saved?  Serialization allows an object to be saved by creating a standard binary 

representation of the object and its components.  The fileDialog was declared as an 

attribute of the RigalFrame class.  It did not need to be, in fact a local declaration would 

serve the purpose and take up insignificantly less memory but increase class cohesion.  

The fileDialog fdSaveDiagram was moved to a local variable since it is not an essential 

attribute but a utility class.  Experimentation with this change produced successful save 

operations. 

8. Inconsistent Saves or EOF on Open 

During impromptu testing, sometimes a recently saved file would throw an end of 

file exception when attempting to restore it.  This most likely occurred because the 

information had never been saved in the file. 

 
          try 
          { 
            // oos.flush(); 
            oos.close(); 
          } 

Figure 44.   Method flush() Disabled 

Upon inspection the flush method was found commented out in the 

RigalFrame.handleEvent() save loop.  Java commonly uses information buffers as 

intermediate pipelines for its I/O processing.  An output command sends information to 

the buffer, but when the information is forwarded to a file is up to the host operating 

system.  A flush method is provided to insist the buffer be processed immediately.  It is 

common practice to flush prior to closing an output stream, otherwise the stream may be 

terminated   with   information   left   in   the   buffer   producing   inconsistent   behavior.   



50 

Restoration of the flush command has produced no restore problems to date.  But since 

this situation is beyond the scope of this work to replicate a test state, there can be no 

certainty of success. 

9. Open with Title Restore 

When “Open” was selected from the menu bar, a full restoration of the diagram 

state at the time of saving is expected.  The 1.0 restore did not recover the original title.  

It was also inconsistent when restoring all elements in the diagram if the diagram was 

saved and then opened without reinitializing the program, some were left out.  

Immediately after saving there were picture artifacts on the mode buttons that might erase 

with use depending on the platform.   

 
Figure 45.   State of Diagram When Saved 

 



51 

 
Figure 46.   After Deleting Data Box 

 

 
Figure 47.   Immedietly After Opening the Saved Diagram 

 



52 

 
Figure 48.   Diagram Restore Showing Artifacts on Mode Buttons 

 

The problem seemed to be with imperfect management of ElementContainer 

details.  An effort was made to clean up the single ElementContainer and prepare it for 

repopulation.  Not everything was returned to the starting state.  The saving of a diagram, 

pictured above, then deletion of a connected data box followed by opening of the saved 

diagram resulted in the pictured situation.  This was due to content array manipulation 

and failure to fully reset the state.  Extensive methods exist to clone program objects, that 

is make deep copies with the same information but different object handles in the Java 

language environment.  Rather than unravel all of these techniques the program was 

changed to re-initialize the diagram.   

With the repair of the serializable save feature there is no reason to try and 

manage the details of a diagram.  An entire diagram can be directly saved to file as a 

single object.  With this method corrupted diagram states have less of an impact since 

each is partitioned from any others.  The possibility of direct diagram interaction is 

reduced.  If a diagram is saved then an open command can discard the current diagram 

and reinstall the target diagram.  The save function was edited to save an 

ElementContainer. 



53 

RigalFrame.restoreElementContainer() was modified so that now when opening a 

diagram everything is removed from the RigalFrame content pane and initialization 

behavior from the constructor is duplicated in loading the target ElementContainer from 

file.  It is best practice to have this behavior consolidated but this is currently not the 

case.  It is probable a large amount of the behavior can be consolidated but two different 

functions are being performed.  One is creating new objects all together.  The other is 

introducing a preexisting object into a new environment. 

10. Clean New   

When “New” was selected from the menu bar the diagram ports disappear.  These 

ports are the visible part of an ElementPortManager which is stored in the first position of 

the diagram array.  During cleanup operations it was removed with all of the other 

elements and never replaced.  Following the model established above <REF>, 

RigalFrame.handleEvent() is modified to hide the content pane, initialize a new 

ElementContainer and set the pane visible again.  The ElementContainer is initialized by 

calling a new method, freshElementContainer().  All ElementContainer initialization is 

moved from the RigalFrame constructor into this method and replaced with a method 

call.  The method also checks to remove an old ElementContainer before starting fresh.  

Now initialization behavior resides in RigalFrame.handleEvent() and 

RigalFrame.freshElementContainer.   

11. Restore Signature 

Open always restores the diagram signature to the default, null, state.  

ElementContainer.paint() sets the signature to null if it needs to create a new properties 

dialog.  Aside from the inadvisability of doing housekeeping in the paint() loop, if-else 

logic was added to allow restoration of a predefined signature. 

12. Showing Nesting with Progressive Thickening 

This is a new feature.  It is unclear when looking at a diagram whether a data box 

is nested or simply overlapping.  This change also allows the diagram to visually depict a 

data box’s level of nesting.  The convention chosen is to progressively thicken the box 

lines with each level of nesting.  The root box would have a thickness of 1, the normal 

line thickness for a diagram element.  The thickness of a nested box would be determined 



54 

by counting its tree distance from the root and adding this number to 1.  An example 

shows, the thicker the lines the deeper the nesting.  

 

 
Figure 49.   Nesting Without Line Thickening 

 



55 

 
Figure 50.   Nesting Without Line Thickening 

 

With the use of Sun’s ShapesDemo2D.java class for reference, it requires using a 

Graphics2D object vice a Graphics object.  Components are drawn by the high level 

Element.paint().  Since Graphics2D inherits from Graphics, all legacy methods function 

the same.  For this change, the Graphics object g is recast as a Graphics 2D and assigned 

to g2, then all drawing is done with g2.  If the element is a data box then the default 

thickness of 1 is adjusted for the tree depth of the data box using the new method, 

elementTreeLevel(). 

 
 
 
 
 
 
 
 
 
 
 
 
 



56 

 
 

  public void paint(Graphics g) 
  { 
    // System.out.println("*Element.paint(Graphics g) is called*"); 
    Polygon poly = new Polygon(polyPolygon.xpoints, polyPolygon.ypoints, polyPolygon.npoints); 
 
 
    for (int i=0; i<poly.npoints-1; i++) 
    { 
      poly.xpoints[i] -= ecElementContainer.getOffsetX(); 
      poly.ypoints[i] -= ecElementContainer.getOffsetY(); 
      // g.drawLine(poly.xpoints[i], poly.ypoints[i], poly.xpoints[i+1], poly.ypoints[i+1])); 
    } 
    // g.drawPolyline(poly); 
    // GCP line thickness control for nested nodes and stream connector 
    Graphics2D g2 = (Graphics2D) g;// GCP switch graphics engine so we can control thickness 
 
    int thickness = 1;// GCP default thickness 
    if (this instanceof ElementData) {// GCP special case for nested thickness 
      thickness += elementTreeLevel( 0 , ecElementContainer );// GCP add additional thickness if 

needed 
    } 
 
    BasicStroke wideStroke = new BasicStroke ( (float) thickness );// GCP select line width to 

show nesting 
    g2.setStroke( wideStroke);// GCP set line width to show nesting 
     
    g2.drawPolyline(polyPolygon.xpoints, polyPolygon.ypoints, polyPolygon.npoints);// GCP 

change to g2 
  } 
Figure 51.   New paint() Method to Allow Line Thickness Change 

 
  /** Recursive method to find a nested element depth from its root parent or; the 
   * number obtained by starting from 0 with the outer element and counting in to the 
   * nested element.  Used for determining nested element line thickness.  Initially called with 
   * 0 or result inaccurate. 
   * @return distance from parent of this nested element 
   * @param total Seed value of zero, used to collect number of levels 
   * @param tempEC Element container passed to save recursive queries for same info. 
   */ 
  private int elementTreeLevel( int total , ElementContainer tempEC ) { 
        // Final parent drops through and returns with no change 
        if ( this.getNested()) {// others call immediate parent recursively 
          int parentID = this.getNestParentId();// get parent 
          Element parent = tempEC.getElementWithId( tempEC , parentID ); 
          // find level of parent 
          // add 1 for this instance and pass it back 
          total = parent.elementTreeLevel( 0 , tempEC ) + 1 ; 
        } 
        return total; 
  }//end elementTreeLevel() 

Figure 52.   New Method elementTreeLevel() 



57 

The elementTreeLevel() method is a recursive method that returns 0 for a root 

element or the depth for a non-root element.  This value is simply added to the thickness 

and the polygon drawn normally.  This is equivalent to using a thicker pen to draw 

between the same two points. 

This change breaks encapsulation.  A paint() method should be added to elements 

requiring a Graphics2D object.  This method can pass the Graphics2D object to 

Element.paint() with a super.paint() call. 

13. Twilight Nesting 

This is a fix for a special situation found during testing.  If a nested data box is 

initially placed so it is not enclosed by the parent box, it enters a twilight region of 

nesting.  It is nested but not nested in anything.  A variety of troublesome behavior can 

follow from further manipulation of this twilight nested box.  If it is moved fully within 

any other box, the program senses a nested box and will not allow it to be moved out of 

the enclosing box.  This can further increase the illusion of being nested.  However, the 

twilight box will not move with the parent and will never print out.  To this last, the box 

is nested so it needs a parent to print out but has none.  This breaks the contract of 

diagram matching code and this overlapping should not be allowed.  It is also a low 

priority on the list of fixes and features.  The previously thickened lines for nested boxes 

will help identify this situation but the twilight situation can be easily fixed. 



58 

 
Figure 53.   Twilight Nesting Example 

 

ElementContainer.processNestedElement() sets the nested flag before checking 

who is the box’s parent.  The parent is determined by referencing the diagram to see 

which component encloses the target box.  Since no boxes meet this condition there is no 

parent.  This method takes advantage of the information stored as the diagram and 

strengthens the contract of equivalence between the diagram and the code.  If there is a 

parent all of the nested attributes are appropriately assigned.  The quick fix is to move the 

nested flag change into this conditional statement.  Now there can be no more twilight 

nested boxes. 



59 

 

 
  public void processNestedElement(Element eTemp){// Assumes nested 
    Element eNest = null; 
    int iNestId = getNestId(eTemp); 
    //eTemp.setNested(true);// GCP original location, always set to nested   
    eTemp.setNestId(iNestId);  // called once 
    System.out.println("getNestId(eTemp): " + iNestId); // called twice 
    eNest = getNestElement(eTemp); // called thrice 
    System.out.println("eNest: " + eNest); 
    if(eNest != null){ 
      eTemp.setNested(true);// GCP more correct place, only nested if there is a 

parent 
      eNest.getNestVector().add(eTemp); 
      eNest.setHasChild(true); 
    } 
  }//end processNestedElement() 

Figure 54.   Cause of Twilight Nesting 
 
 
14. Adding Streams 

This is a new feature to add the stream icons to the available diagram elements 

and expand the language.  The quickest way to achieve this goal is by extending, or 

inheriting from, the ElementConnector class.  Both elements are to have very similar 

behavior, as it turns out only the graphical methods need to be overridden.   

 



60 

 
Figure 55.   Example of a Stream Connector 

 

As simple as this sounds the following table shows the changes needed to make 

this inheritance shortcut successful.  These locations were found using a package search 

for “connect.” 



61 

 

 

Change in For purpose of 

ToolBoxElementandActions Stream button 

ConstantsStatus Stream mode identification 

number 

ElementContainer.setEditorStatusBar() Stream status bar messages 

ElementContainer.mouseDown() Same behavior for streams 

and connectors with appropriate 

status messages for each 

ElementContainer.mouseUp() Add streams with same 

behavior as connectors 

ElementContainer.mouseMove() Add stream behavior 

ConstantsElement Identification number 

Element.paint() If stream then set color and 

thickness 

ElementContainer.getText() Prints connectors add streams

ElementContainer.addConnectorElement() Allow streams 

Table 1. Changes Required to Support Streams 
 

This opportunity was also taken to remove redundant drawing routine in 

ElementPortManager.paint().  This was only significant for connectors since most 

elements are drawn by the Element.paint() method.  Connectors must draw their own 

arrowheads.  For these elements the drawing hierarchy is Element.paint()  

ElementPortManger.paint()  ElementStream.paint().  The ElementPortManger method 

is only needed as a bridge along the hierarchy.  The original code is left intact for 

illustration and is indicated by the author’s bold initials, GCP. 



62 

  public void paint(Graphics g) 

  { 
     super.paint(g); 
    //System.out.println("**ElementPortManager.paint(g) is called**"); 
    //System.out.println("polyPolygon: " + polyPolygon); 
 
//    if () 
  //  { 
 
    //} 
    //else 
    // GCP redundant draw routine if (polyPolygon != null) 
    // GCP { 
    // GCP   //System.out.println("polyPolygon is NULL"); 
    // GCP   for (int i=1; i<polyPolygon.npoints; i++) 
    // GCP   { 
    // GCP     UtilGraphics.drawLine(g,polyPolygon.xpoints[i-1] - 

ecElementContainer.getOffsetX() 
    // GCP                           ,polyPolygon.ypoints[i-1] - 

ecElementContainer.getOffsetY(), 
    // GCP                           polyPolygon.xpoints[i] - 

ecElementContainer.getOffsetX(), 
    // GCP                           polyPolygon.ypoints[i] - 

ecElementContainer.getOffsetY(), iThick); 
    // GCP   } 
    // GCP } 
    //if (ecElementContainer.getMode() == ConstantsStatus.CONNECT || 

  … 
Figure 56.   Duplicated Drawing Routine 

 
 
15. Adding Alternative Patterns 

This is a new feature to add the alternative pattern icons to the available diagram 

elements and expand the language.  Inheritance is again leveraged for this task, as was 

done for stream icons.  The paint() and printTest() methods needed to be overridden as 

before.  The alternative pattern looks different from a fork but has the same port behavior 

graphically.  The only other difference for the GUI is the text file interface representation, 

despite the vastly different icon meaning.  This is possible because executable icon 

behavior is contained in the VisualRigal parser, which is already implemented, by 

architectural design.  This is an example of the benefits a formal design might have 

brought to the GUI application. 



63 

 

 
Figure 57.   Example of an Alternative Pattern 

Greater use of inheritance was made in this case.  Many internal checks for proper 

behavior of an alternative pattern actually reference the super class ElementFork.  A 

comparison of the following table with table 1 shows four less places needing change.  

Five of the six remaining changes simply support display of the correct status bar 

message.  More efficency could have been attained if the status bar behavior were 

designed to be encapsulated within each class. 

 
Change in For purpose of 

ToolBoxElementandActions AltPattern button 

  ConstantsStatus AltPattern mode identification number 

ElementContainer.setEditorStatusBar() Alt_Pattern status bar messages 

ElementContainer.mouseDown() Same behavior for alternative 

patterns and forks 

ElementContainer.mouseUp() Add alternative patterns with 

same behavior as forks 

ElementContainer.mouseDrag() Add alternative patterns with 

same behavior as forks 

Table 2. Changes Required to Support Alternative Patterns 



64 

E. TEST PLAN 

1. Assumptions 

GUI testing was not be automated because of resource constraints.  Automated 

testing of code was available with the use of Parasoft’s JTest tool.   

2. Methodology 

The test plan is composed of testing in the two following areas: 

a. Black Box Testing 

Black box testing encompasses those tests done without reference to 

implementation details.  This portion of the test plan was focused on testing support 

application requirements defined in the requirements analysis in appendix D.  Test cases 

consist of a series of GUI actions designed to exercise all icons and modes at least once.  

No attempt was made to exercise all combinations or possible input series. 

b. White Box Testing 

White box testing encompasses those tests done with reference to 

implementation details.  The primary portion of this part of the test plan will rely on 

automated testing using JTest.  These tests were supplemented by test cases created with 

application design in mind. 

F. TESTING RESULTS 

1. Automated Test Results and Corrections 

JTest checked all 47 classes and 12,141 lines of code and found violations of 29 

Parasoft “Must Have Rules”.  These violations represent a total of  833 errors, 740 of 

which were corrected using JTest’s quick fix feature.  The JTest test report is available in 

appendix A for review. 

2. Manual Test Results 

a. Deleted Nested Box Still Reported in Text File Interface 

Testing found nested boxes that were deleted appeared in the text file 

interface as if they had never been deleted.  This violates the implied contract to maintain 

equivalence between the visual and logical depiction of code.   

b. Diagram Signature is Not Reported in Text File Interface 

The diagram signature never appears in the text file. 

 



65 

c. Resize of Elements Other Than Data Boxes Removes 
Connections 

All elements, other than data boxes, loose their connections when resized.  

This is the same situation described previously for data boxes, prior to the correction 

described above. 

d. Unable to Change Number of Element Ports 

The number of output ports for the fork and alternative pattern elements 

and the input ports for the merge element do not change despite initiating a change in the 

properties dialog. 

e. Diagram Element is Deleted While Adding Another 

After executing a test script for several actions, the addition of a connector 

removes the last element previously added to the diagram. 

G. CORRECTIONS BASED ON TESTING BEHAVIOR 

1. Corrections to Deleting Nested Box Behavior 

The application deletion routine, ElementContainer.deleteObjectWithId(), 

removed the target element’s reference from the element array which holds all elements 

in the diagram, ElementContainer.aElementsInElementContainer.  However, this routine 

leaves the same reference in the parent child vector, Element.vNestVector.  The diagram 

element array is used to display elements on the screen.  The parent child vector is used 

to print a logical representation of nested elements to the interface text file.   

The deletion routine was modified to remove the child reference, and then further 

modified to be a tree node deletion routine.  That is, if the target nested element is a 

parent itself, the children are introduced to the grandparent and become the grandparent’s 

children. 

 

 

 

 

 

 



66 

  public synchronized void deleteObjectWithId(int id) 
  { 
    int i; 
    for (i=0; i<iIndexOfElementsInElementContainer; i++) 
    { 
      if (aElementsInElementContainer[i].getId() == id) 
      { 
        if( aElementsInElementContainer[i].getNested() ){//GCP if nested 
          Element eParentOfDeleting = aElementsInElementContainer[i].getNestElement(); 
          Vector vParentVector = eParentOfDeleting.getNestVector(); 
          Element eDeletingElement = getElementWithId( this,id ); 
          vParentVector.remove( eDeletingElement );//GCP remove nest reference in parent 
 
          Vector vVectorOfChildren = eDeletingElement.getNestVector(); 
          Iterator iterChildVector = vVectorOfChildren.iterator(); 
          Element eChild = null; 
 
          while ( iterChildVector.hasNext() ) {//GCP add children to  grand-parent 
            eChild = (Element) iterChildVector.next(); 
            vParentVector.add( eChild ); 
            eChild.setNestId( eParentOfDeleting.getId() ); 
          } 
            //GCP reorder vParentVector 
        }else{//GCP top level element 
            if ( aElementsInElementContainer[i].hasChild() ) {//GCP with children 
 
              Element eDeletingElement = getElementWithId( this,id ); 
              Iterator vDeletingChildren = eDeletingElement.getNestVector().iterator(); 
              Element eElement = null;//GCP holding site 
              //make them top level elements 
              while ( vDeletingChildren.hasNext() ) { 
 
         eElement =  (Element) vDeletingChildren.next(); 
                eElement.setNested( false ); 
                eElement.setNestId( -1 ); 
              }//end while 
 
            }//end if has child 
 
        }//end if-else 
 
 aElementsInElementContainer[i] = null; 
 break; 
      }// end if id 
    }// end for i 
 
    if (aElementsInElementContainer[i] == null) 

Figure 58.   Changes to Element Deletion Routine 
 
 
 
 
 
 



67 

2. Correction to Have Diagram Signature Reported in Text File 
Interface 

The signature was added in the reporting method right after the title is reported. 
 
  public void getText(PrintStream ps) 
  { 
    ps.println("name      " + this.getCaption()); 
    ps.println("signature (" + this.getSignature()+ ")");//GCP add signature 
    ps.println(""); 
    ps.println("input_ports  ("+ncp.getInputPortIds()+")"); 

Figure 59.   Change to Report Signature 
 

3. Correction to Change number of Element Ports on Fork, Merge and 
Alternative Pattern 

This behavior was commented out for fork and merge elements.  This was 

probably for previous troubleshooting.  Each line of code was restored to correct this 

fault. 



68 

 

4. Correction to Prevent Diagram Element is Deletion While Adding a 
Different Element 

This was an insidious logic fault since the logical failure is not initially apparent.  

When an element is targeted for deletion there are two possible paths, one for non-

connector elements and one for connectors.   

 if (eElement instanceof ElementPortManager)        { 

   if (((ElementPortManager)eElement).isConnected())          { 

     ((ElementPortManager)eElement).disconnect(); 

   } 

   deleteObjectWithId(eElement.getId()); 

   iHighlitedLine=-1; 

   iMatchLine = -1; 

   bMoved=true; 

   repaint(); 

 } 

        else if (eElement instanceof ElementConnector)        { 

   ((ElementConnector)eElement).disconnect(); 

   iHighlitedLine=-1; 

   iMatchLine = -1; 

   bMoved=true; 

   repaint();  // this calls the update(Graphics) method and this method has 

                      // been overridden in ElementContainer.java 

 } 
Figure 60.   Two Possible Branches for Element Deletion 

 

The first path is entered based on the conditional statement (eElement instanceof 

ElementPortManager) where eElement is the target element.  If eElement inherites from 

ElementPortManager this is evaluates to true.  The second is based on (eElement 

instanceof ElementConnector) which evaluates to true if eElement is an 

ElementConnector.  The problem arises because connectors inherit from 

EleemntPortManger as shown in the application UML diagram, figure 20.  For this 



69 

reason the second branch can never execute.  The only difference in the two branches is 

the conditional disconnect action.  Connectors are by definition connected so this 

attribute is never set for them. 

 When a connector is deleted, the reference is removed from the 

ElementContainer.aElementsInElementContainer array preventing the connector from 

being drawn.  Because the connector is never disconnected from its ports, the ports 

maintain the connected state with reference to the connector.  A new element will occupy 

the last position in the ElementContainer.aElementsInElementContainer array.  If a 

subsequent connection is made to one of the ports maintaining reference to the deleted 

connector, the first step is to disconnect and delete this connector.  Since it is already 

absent from the element array above, the element at the same index position is deleted.  

Because the initial fault occurs several steps before a problem is apparent there is 

additional difficulty localizing the it. 

The first branch conditional is modified to exclude connector elements restoring 

the intended functionality, as shown.  

 

if (eElement instanceof ElementPortManager && !(eElement instanceof 
ElementConnector)){// GCP correct connector delete removes last in diagram replace 
by connector 

Figure 61.   Correction for Inadvertent Deletion When Connecting 



70 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 THIS PAGE INTENTIONALLY LEFT BLANK 
 



71 

IV. CONCLUSIONS 

A. ASSESSMENT OF IMPLEMENTATION 

1. Strengths 

a. Defacto Design is Similar to Design Produced by Requirements 
Analysis 

While formal design methodology was not utilized in the initial work, the 

defacto design, shown in figure 20, is very similar to a design from the formal process, 

figure 19.  The intuitive solution produced by an experienced programmer is remarkable 

similar to a deliberate design.  This is not surprising, since they are both attempt to solve 

the same problem.  The common parts of the design allowed relatively easy extension to 

the application. 

b. Support of Equivalence Contract with Java Component Abstract 
Interface 

The use of abstract interface java.awt.Component for visual language 

elements promotes closer equivalence between the graphical and logic representations.  

Java’s graphical routines are based on displaying Components.  The same class attributes 

and methods used to draw the Component are used in processing events targeted on their 

manipulation.  When a text interface is created the class attributes and methods are again 

involved.   

2. Weaknesses 

a. Class Interfaces Not Fully Developed for Extension 

Trouble for maintenance and extension lurks where the defacto design and 

the formally derived design differ.  Indicative of this situation is the unexpected deletion 

of an element when adding a connector.  The defacto design classifies a connector as a 

type of element, on the same level as a data box.  The original author clearly thought of 

connectors as separate from elements as witnessed by his expectation for 

ElementPortManagers to be exclusive of connectors.  By distinguishing between 

elements, or nodes as in figure 19, the original deletion solution would have worked as 

coded. 

 



72 

 

3. Lacks Documentation 

The difficulty caused by lack of documentation have been well 

documented previously, and this fact is mentioned here only for completeness.  This 

problem has been corrected to a great extent by this work. 

B. LESSONS RELEARNED 

During the course of correcting, extending and documenting 11,184 legacy lines 

of code(LOC) to support future maintenance adding an additional 957 LOC and changes 

to 45 LOC, the following basic software engineering priciples were illustrated: 

1. Formal Design Improves Maintainability 

Formal design fully examines the application at a high level of abstraction.  This 

has the result of considering functionality that may not be initially implemented.  Later, 

when new functionality is added there is a higher likelihood the design will support it.  A 

formal design is intended to be a general solution to the problem.  To the extent the 

problem has been fully described, the design should accommodate future extension. 

2. Documented Code Improves Maintainability 

The difficulty posed by trying to understand code lightly documented has been 

elaborated on by examples above.  A formal design process will produce some useful 

documentation, figure 19, but using code comments to illuminate the reason for using 

particular technique can greatly improve comprehension time which, in turn, improves 

maintainability. 

3. Understanding of Design and Requirements Improves Extension 
Solutions 

The authors solution to the addition of stream elements required a variety of 

changes throughout the code.  As understanding of the design and implementation 

increased it became clear the simpler solution used in adding alternative patterns is 

possible.  Any time that can be saved understanding a large piece of software can be 

translated into efficient maintenance and extension solutions. 

4. Object Oriented Design Improves Diagram to Interface Link 

Java components serve as a model for diagram elements.  This model is observed 

by its graphical representation of a screen and its logical representation in the interface 

text file.  If both representations use the same information to create them and changes to 



73 

that information are controlled by the model, there is a good likelihood of equivalence.  

Encapsulation of the information and its manipulation methods is one of the principals of 

object oriented design. 

5. Some Testing is Better Than None 

Though it is likely not possible to fully test an application, some reasoned priority 

of testing can produce excellent results.  By asking, “How can I test under these 

constraints?” instead of, “Should I test under these constraints?” the testing faults 

discussed above were found. 

6. Testing is Necessary to Expose Unexpected Behavior 

The relatively long sequence of events required to expose the inadvertent deletion 

fault made it a challenging fault to detect.  This behavior could never have been intended.  

The solution creating it would have worked given an alternate design, discussed under 

weaknesses above.  Only through formal testing can a fault of this nature be found before 

a user or customer find it for you. 

C. FUTURE WORK 

1. Update Code  

The ElementData resize solution needs to be transferred to other elements.  The 

solution to maintain connections is generalized previously, however, each element 

requires a unique solution.  This is a time consuming cut and paste exercise but was not 

completed by this work. 

There are many deprecated methods used throughout the code and as it ages this 

problem will increase.  Some of the methods needing updating will provide challenging 

design considerations.  For example all of the mouse____() methods have been subsumed 

by the handleEvent() method.  A clever programmer might change the names to 

handleMouse___() and use handleEvent() to farm out the work, avoiding a giant method 

difficult to maintain. 

2. Add New VisualRigal Elements 

There are several additional VisualRigal elements that are not implemented by 

previous work.  The stream and alternative pattern elements were implemented by this 

work. 

3. Adaptation of VisualRigal to the General Programming Domain 



74 

While some elements of VisualRigal would be useful to illustrate general 

programming constructs, the conditional switch for example, the language is design for a 

specialized domain.  The emphasis on fundamental data structures does offer potential for 

more general application, but this must be demonstrated. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



75 

LIST OF REFERENCES 

[1] M. Auguston, V. Berzins, B. Bryant, ”Visual Meta-Programming Language“, 

Proceedings of OOPSLA 2001 Workshop on Domain-Specific Visual Languages, 

2001, pp. 69-82 

[2] N. Shu, “Visual Programming Languages: A Perspective and a Dimensional 

Analysis”, Visual Programming Environments:  Paradigms and Systems, IEEE 

Computer Society Press, 1990, p. 41 

[3] Conversations with NPS student Major Robert Taylor, USMC, 2004 

[4] L. Belady, C. Evangelisti, L. Power, “GREENPRINT:  A Graphic Representation 

of Structures Programs”, Visual Programming Environments:  Paradigms and 

Systems, IEEE Computer Society Press, 1990, p. 79 

[5] Conversations with M. Auguston, NPS, 2004 

[6] P. Cox, T. Pietrzykowski, “Using a Pictorial Representation to Combine Dataflow 

and Object-Orientation in a Language independent Programming Mechanism”, 

Visual Programming Environments:  Paradigms and Systems, IEEE Computer 

Society Press, 1990, p. 313 

[7] M. Boshernitsan, M. Downes, “Visual Programming Languages: A Survey”, 

University of California, Berkeley, 1997, p. 3 

[8] IEEE Software Magazine, Volume 20 Issue 5, 2003 

[9] M. Auguston, Unpublished Presentations Slides for “Control Constructs in Visual 

Meta-Programming Language”, Proceedings of the Tenth International 

Conference on Distributed Multimedia Systems, 2004 

[10] D. Spinellis, “Code Reading”, Addison-Wesley, 2003, 

 

 

 
 



76 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 



77 

APPENDIXES 

 
A. TEST REPORT FOR TESTING PARASOFT MUST HAVE RULES 

 
04/09/12 
19:25:33 CODING STANDARDS 

 
CODING STANDARDS 

 

Project name 
   

 Errors 
qfix / total 

 Files 
checked 

/ total 

 Lines  
checked / total  

 Thesis  740 |833  47 | 47   12141 | 12141  
 Total [0:00:32]     740 |833  47 | 47  12141 | 12141  
 

Errors Summary by:CategorySeverity  
  [230]   Global Static Analysis (GLOBAL)  
         [27]   Avoid globally unused package-private fields. (UPAF-1) qfix 
         [1]   Declare package-private classes as inaccessible as possible. 
(DPAC-1) qfix 
         [2]   Declare package-private methods as inaccessible as possible.
(DPAM-1) qfix 
         [200]   Declare package-private fields as inaccessible as possible. 
(DPAF-1) qfix 
  [3]   Security (SECURITY)  
         [3]   Make all inner classes "private". (INNER-1)  
  [2]   Miscellaneous (MISC)  
         [1]   Avoid non-public classes with "public" constructors. (PCTOR-
2) qfix 
         [1]   Declare "private" constant fields "final". (FF-1) qfix 
  [112]   Optimization (OPT)  
         [2]   Avoid unnecessary "instanceof" evaluations. (UISO-1)  
         [64]   Use abbreviated assignment operators. (AAS-3) qfix 
         [4]   Close input and output resources in "finally" blocks. (CIO-1)  
         [42]   Avoid unnecessary casting. (UNC-1) qfix 
  [3]   Javadoc Comments (JAVADOC)  
         [3]   Provide Javadoc comments for "public" classes and interfaces.
(PJDCC-1) qfix 



78 

  [9]   Class Metrics (METRICS)  
         [9]   Cyclomatic Complexity. (TCC-2)  
  [109]   Possible Bugs (PB)  
         [63]   Avoid casting primitive data types to lower precision. (CLP-2) 
         [6]   Avoid comparing floating point types. (DCF-2)  
         [11]   Avoid a "switch" statement with a bad "case". (SBC-3) qfix 
         [22]   Avoid using "+" on Strings to concatenate instead of add 
numbers. (DCP-3) qfix 
         [7]   Use 'equals ()' when comparing Objects. (UEI-3) qfix 
  [156]   Coding Conventions (CODSTA)  
         [156]   Avoid using literal constants. (USN-2) qfix 
  [3]   Garbage Collection (GC)  
         [3]   Avoid potential memory leaks in ObjectOutputStreams by 
calling 'reset ()'. (OSTM-2)  
  [48]   Object Oriented Programming (OOP)  
         [17]   Avoid "public" instance fields. (APF-2) qfix 
         [30]   Avoid hiding inherited instance fields. (AHF-1) qfix 
         [1]   Avoid overriding an instance "private" method. (OPM-2) qfix 
  [123]   Unused Code (UC)  
         [75]   Avoid unused "import" statements. (UIMPORT-2) qfix 
         [3]   Avoid assignments to variables that are never read. (AVNR-2) 
         [1]   Avoid unused "private" fields. (PF-2) qfix 
         [43]   Avoid unused local variables. (AUV-2) qfix 
         [1]   Avoid unused "private" methods. (PM-2) qfix 
  [35]   Naming Conventions (NAMING)  
         [35]   Avoid lowercase letters in "final" "static" field names. (USF-2) 
qfix 
  [315]   Severity 1 
        [230]   Global Static Analysis (GLOBAL)  
               [27]   Avoid globally unused package-private fields. (UPAF-1) 
qfix 
               [1]   Declare package-private classes as inaccessible as 
possible. (DPAC-1) qfix 
               [2]   Declare package-private methods as inaccessible as 
possible. (DPAM-1) qfix 
               [200]   Declare package-private fields as inaccessible as 
possible. (DPAF-1) qfix 
        [3]   Security (SECURITY)  
               [3]   Make all inner classes "private". (INNER-1)  
        [1]   Miscellaneous (MISC)  
               [1]   Declare "private" constant fields "final". (FF-1) qfix 



79 

        [48]   Optimization (OPT)  
               [2]   Avoid unnecessary "instanceof" evaluations. (UISO-1)  
               [4]   Close input and output resources in "finally" blocks. (CIO-
1)  
               [42]   Avoid unnecessary casting. (UNC-1) qfix 
        [3]   Javadoc Comments (JAVADOC)  
               [3]   Provide Javadoc comments for "public" classes and 
interfaces. (PJDCC-1) qfix 
        [30]   Object Oriented Programming (OOP)  
               [30]   Avoid hiding inherited instance fields. (AHF-1) qfix 
  [414]   Severity 2 
        [1]   Miscellaneous (MISC)  
               [1]   Avoid non-public classes with "public" constructors. 
(PCTOR-2) qfix 
        [9]   Class Metrics (METRICS)  
               [9]   Cyclomatic Complexity. (TCC-2)  
        [69]   Possible Bugs (PB)  
               [63]   Avoid casting primitive data types to lower precision. 
(CLP-2)  
               [6]   Avoid comparing floating point types. (DCF-2)  
        [156]   Coding Conventions (CODSTA)  
               [156]   Avoid using literal constants. (USN-2) qfix 
        [3]   Garbage Collection (GC)  
               [3]   Avoid potential memory leaks in ObjectOutputStreams by 
calling 'reset ()'. (OSTM-2)  
        [18]   Object Oriented Programming (OOP)  
               [17]   Avoid "public" instance fields. (APF-2) qfix 
               [1]   Avoid overriding an instance "private" method. (OPM-2) 
qfix 
        [123]   Unused Code (UC)  
               [75]   Avoid unused "import" statements. (UIMPORT-2) qfix 
               [3]   Avoid assignments to variables that are never read. 
(AVNR-2)  
               [1]   Avoid unused "private" fields. (PF-2) qfix 
               [43]   Avoid unused local variables. (AUV-2) qfix 
               [1]   Avoid unused "private" methods. (PM-2) qfix 
        [35]   Naming Conventions (NAMING)  
               [35]   Avoid lowercase letters in "final" "static" field names. 
(USF-2) qfix 
  [104]   Severity 3 
        [64]   Optimization (OPT)  



80 

               [64]   Use abbreviated assignment operators. (AAS-3) qfix 
        [40]   Possible Bugs (PB)  
               [11]   Avoid a "switch" statement with a bad "case". (SBC-3) 
qfix 
               [22]   Avoid using "+" on Strings to concatenate instead of add 
numbers. (DCP-3) qfix 
               [7]   Use 'equals ()' when comparing Objects. (UEI-3) qfix   
 
 

© Parasoft Corp. - Jtest® 5.1.57 Reporting System  
 
B. CHANGES TO ORIGINAL CODE 

 This appendix represents all changes to the original code.  It is provided as 
a reference.  It consists of a list of solution titles followed by code segments.  The class 
and method of the code are indicated and a cut and paste operation is expected.  Note the 
use of elipses, …, for large methods to indicate several lines of code not shown.  In such 
cases enough code remains to correctly identify the position of the code segment.  Bold 
face contents containing the authors initials, GCP, indicate the key location for the 
change. 

 
Contents: 
Fix for 3 compiler errors 
Successful attempt to add proper nesting data boxes printText 
Changes to maintain connections during resizing 
Changes to allow saving (and restore as implemented) 
Change for inconsistent saves / failed saves 
Changes for clean “New” and “Open” with title restore 
Changes for signature restore 
Changes for progressive thickness of nested elements 
Changes for Stream Connector 
Changes for nesting pattern boxes 
add proper nesting pattern boxes printText 
delete nested boxes from parent child vector so they do not print out from 

there 
Encapsulate stream and nesting thickness data and pattern box graphics 
Add signature to text file 
Ordered nested boxes 
Add AltPattern 
Fix multi-ports for fork, alt pattern and merge 
Fix delete connector then add connector deletes previous node from diagram 
 
 
 
Fix for 3 compiler errors in ElementPortManager: 



81 

 
  public Element getElement() 
  { 
    return (Element) this;// GCP changed super() to (Element) this 
  } 
 
   public void move(int x, int y) 
   { 
      // move mother element 
      if (super.getNested()){ 
          moveNestedElement((Element) this, x, y);// GCP changed from super() to 

(Element) this 
          // System.out.println("called moveNestedElementOnly()"); 
      } 
      else if (!super.getNested()){ 
          moveNotNestedElement((Element) this, x, y);// GCP changed from 

super() to (Element) this 
          // System.out.println("called moveNotNestedElementOnly()"); 
      } 
   } 
          
Successful attempt to add proper nesting data boxes printText, in 

ElementData: 
 
  // print all parent data boxes, call nested print if needed 
  public void printText(PrintStream ps) 
  { 
      if(!this.getNested()) 
      { 
          Vector vMyChildren = new Vector(); 
          vMyChildren = getNestVector(); 
           
          System.out.println("printText called from ElementData"); 
          ps.println(""); 
          ps.println("data_box ("); 
          ps.println("   inp_port_names (" + getInputPortNames() + ")"); 
          ps.println("   inp_port_ids (" + getInputPortIds() + ")"); 
          ps.println("   out_port_ids (" + getOutputPortIds() + ")"); 
          ps.println("   expr " + this.getCaption()); 
          for(int i = 0; i < vMyChildren.size() ; i++){ 
              ((ElementData) vMyChildren.elementAt( i ) ).printNestText(ps,1);; 
          } 
          ps.println(")"); 
          ps.println(""); 
      } 
  } 



82 

 
//recursively print nested children, tabing based on current layer 
  public void printNestText(PrintStream ps, int numberOfTabs) { 
      Vector vMyChildren = new Vector(); 
      vMyChildren = getNestVector(); 
           
      ps.println(""); 
      printTabs(ps, numberOfTabs); 
      ps.println("data_box ("); 
      printTabs(ps, numberOfTabs); 
      ps.println("   inp_port_names (" + getInputPortNames() + ")"); 
      printTabs(ps, numberOfTabs); 
      ps.println("   inp_port_ids (" + getInputPortIds() + ")"); 
      printTabs(ps, numberOfTabs); 
      ps.println("   out_port_ids (" + getOutputPortIds() + ")"); 
      printTabs(ps, numberOfTabs); 
      ps.println("   expr " + this.getCaption()); 
      for(int i = 0; i < vMyChildren.size() ; i++){ 
          ((ElementData) vMyChildren.elementAt( i ) ).printNestText(ps , 

numberOfTabs + 1 ); 
      } 
      printTabs(ps, numberOfTabs); 
      ps.println(")"); 
      ps.println(""); 
  } 
   
//prints given number  of 3 space tabs to stream 
  public void printTabs( PrintStream ps,int numberOfTabs) { 
      for(int i = 0 ; i < numberOfTabs ; i++ ){ 
          ps.print("   "); 
      } 
  } 
   
Changes to maintain connections during resizing, in ElementData: 
 
  public void resize (int width, int height) 
  { 
    … 
    //cleanAllPorts();// GCP strips connectors, remove 
    //updateElementPorts();// GCP redraws ports, remove but use 
 
    moveElementPorts();// GCP new method 
  }//end resize() 
 
  // new method;  refit of updateElementPorts() 
  //   Used loop interior from MOVE loop, traced from 



83 

  // ElementContainer.mouseDrag() 
  // case ConstantsStatus.MOVE_ELEMENT: leading to 
  // ElementPortManager.moveNotNestedElement(), 
  // which is -->aPortsOnElement[i].translate(difx,dify); . 
  //   The point calculation from updateElementPorts(), determines 
  // the correct port position. 
  //   Translate uses a difference in position vice a position 
  // requiring trading .move() for .tranlate() . 
  public void moveElementPorts() 
  { 
    int iInputPortOffset = height/(iNoOfInputPorts+1); 
    int iOutputPortOffset = height/(iNoOfOutputPorts+1); 
    int iInputIndex=0, iOutputIndex=0; 
 
    //System.out.println("iNoOfInputPorts: " + iNoOfInputPorts); 
    //System.out.println("iNoOfOutputPorts: " + iNoOfOutputPorts); 
 
    // insert new ports 
    for(iInputIndex=0; iInputIndex<iNoOfInputPorts; iInputIndex++) 
    { 
      // System.out.println("iNoOfInputPorts: " + iNoOfInputPorts); 
      // System.out.println("value of iInputIndex before 1st loop line: " + 

iInputIndex); 
      // iInputIndex represents the portNum and idNo represents the parent Element 

on which the ports belong 
      // cleanPort(iInputIndex); 
      //aPortsOnElement[iInputIndex] = new 

Port(ptStart.x,ptStart.y+(iInputPortOffset*(iInputIndex+1)),iInputIndex, 
      //                                idNo,ConstantsRigal.iOUTPUT_PORT_TYPE_ID); 
      //aPortsOnElement[i].translate(difx,dify);// GCP need move 
      

aPortsOnElement[iInputIndex].move(ptStart.x,ptStart.y+(iInputPortOffset*(iInputIndex+
1)));// GCP formula from updateElementPorts() 

    // System.out.println("value of iInputIndex after 1st loop line: " + iInputIndex); 
    } 
    // System.out.println("value of iInputIndex after 1st for loop: " + iInputIndex); 
    // System.out.println("iInputIndex: " + iInputIndex); 
    // System.out.println("iOutputIndex: " + iOutputIndex); 
 
    for(iOutputIndex=0; iOutputIndex<iNoOfOutputPorts; iOutputIndex++) 
    { 
       //aPortsOnElement[iInputIndex+iOutputIndex] = new 

Port(ptStart.x+width,ptStart.y+(iOutputPortOffset*(iOutputIndex+1)), 
       //                                           

iInputIndex+iOutputIndex,idNo,ConstantsRigal.iINPUT_PORT_TYPE_ID); 



84 

       
aPortsOnElement[iInputIndex+iOutputIndex].move(ptStart.x+width,ptStart.y+(iOutputP
ortOffset*(iOutputIndex+1)));// GCP formula from updateElementPorts() 

      //System.out.println("value of iInputIndex+iOutputIndex after 2nd loop line: " 
+ (iInputIndex+iOutputIndex)); 

    } 
       //System.out.println("value of iInputIndex+iOutputIndex after 2nd for loop: " 

+ (iInputIndex+iOutputIndex)); 
       iInputIndex = 0; iOutputIndex = 0; 
  } 
 
Changes to allow saving (and restore as implemented), in RigelFrame: 
 
public class RigalFrame extends JFrame 
  implements java.io.Serializable 
  // implements ComponentListener 
{ 
  ElementContainer ecElementContainer = null; 
  // ElementContainer ecNew = null; 
  FileDialog fdSaveText, fdOpen;// Remove fdSaveDiagram GCP, 3 additional 

change locations 
  TextField txtStatus; 
… 
}//end class RigalFrame 
 
// constructor used in application 
  public RigalFrame(String title) 
  { 
… 
      fdSaveText = new FileDialog(this,"Save Diagram As Text", 

FileDialog.SAVE); 
      fdSaveText.setFilenameFilter(new EndsWith(".TXT")); 
      // fdSaveText.setFilenameFilter("*.TXT"); 
      // moved and modified to handleEvent() GCP 
      //fdSaveDiagram.setFilenameFilter(new EndsWith(".BIN"));//SUPPRESS, 

could move also GCP 
      fdOpen = new FileDialog(this,"Open Diagram", FileDialog.LOAD); 
 … 
    }// end RigalFrame(String) 
 
public boolean handleEvent (Event e) 
  { 
         … 
        ObjectOutputStream oos = null; 
        // System.out.println("File -> Save Text called"); 



85 

        FileDialog fdSaveDiagram = new FileDialog(this,"Save Diagram", 
FileDialog.SAVE);//GCP Moved and modified 

        fdSaveDiagram.pack(); 
 … 
    }//end handleEvent() 
 
Change for inconsistent saves / failed saves, in RigalFrame: 
 
  public boolean handleEvent (Event e) 
  { 
    … 
          try 
          { 
            oos.flush();// GCP restored standard use, probably commented out for 

not serializable error troubleshooting 
            oos.close(); 
          } 
    … 
  }//end handleEvent() 
 
Changes for clean “New” and “Open” with title restore, in RigalFrame: 
 
  public boolean handleEvent (Event e) 
  { 
    if (((String)e.arg).equals("Save Diagram")) // File -> Save menu item 

begins 
      { 
        … 
 
        try 
        { 
          System.out.println("inside the try block of save Diagram()..."); 
          // OutputStream fos = new FileOutputStream("MyFile.bin"); 
          // ObjectOutputStream oos = new ObjectOutputStream(fos); 
 
          oos = new ObjectOutputStream( 
                new BufferedOutputStream( 
                new FileOutputStream(sFilePath + sFileName))); 
 
         // Element[] aElements = ecElementContainer.getArrayOfElements(); 
         // if (aElements != null){ 
            //System.out.println("aElements is NOT null"); 
           // System.out.println("****debugging for serialization"); 



86 

           // 
System.out.println(UtilRigal.getDebugElementArrayString(aElements)); 

            // oos.writeObject(ecElementContainer.getArrayOfElements()); 
            oos.writeObject(ecElementContainer);// GCP save entire 

container to save work, allowed with serialization fix 
         // }//end if 
          System.out.println("passed --> 

oos.writeObject(ecElementContainer)"); 
        }//end try 
 
 
  public boolean handleEvent (Event e) 
  { 
 … 
    if (((String)e.arg).equals("New")) 
      { 
 if (psOutFile != null) psOutFile.close(); 
 
 //ecElementContainer.restart(); GCP replaced with: 
        this.getContentPane().setVisible( false );// GCP hide change 
        //removeElementContainer( this, ecElementContainer );// GCP swap 

out, done in freshElementContainer() 
        freshElementContainer();// GCP creates brand new initialized 

object 
        this.getContentPane().setVisible( true ); 
 
 psOutFile = null; 
 sFileName = null; 
 this.setTitle("New Untitled Element"); 
      } 
 
 
public void restoreElementContainer(String sFile) 
 { 
    System.out.println("restoring Element Container..."); 
    ObjectInputStream ois = null; 
    ElementContainer ecTemp = null; 
    // sFile = sFilePath + sFileName; 
 
    try 
      { 
        //Element aeTemp[] = null;// GCP removed 
        //Element[] aeRetrieved = null; // GCP removed 



87 

 
        ois = new ObjectInputStream( 
              new BufferedInputStream( 
              new FileInputStream(sFile))); 
           // new FileInputStream("MyFile.bin"))); 
 
        Object obj = ois.readObject(); 
        //aeRetrieved = (Element[]) obj; // GCP removed 
        if ( obj != null ) {// GCP troubleshooting, but not bad practice 
          ecTemp = (ElementContainer) obj;// GCP restored 
          // restoreSerializedElements(ecElementContainer, ecTemp); 
          //restoreSerializedElements(ecElementContainer, aeRetrieved); // 

GCP removed 
 
 
          this.getContentPane().removeAll();// GCP clean start 
 
 
          txtStatus = new TextField();// GCP moved from constructor 
          txtStatus.setEditable(false); // GCP moved from constructor 
 
          // **** restore diagram 
          ecElementContainer = ecTemp;// GCP stored container restored 

logically 
          ecTemp = null;// GCP good housekeeping 
          ecElementContainer.setRigalFrame( this );// GCP environment 

introductions normally done in EC constructor 
          ecElementContainer.setEditorStatusBar( ConstantsStatus.STARTUP 

);// GCP attribute initialization normally done in EC constructor 
 this.setTitle( ecElementContainer.getTitle() );// GCP restore title 
          // ecNew = new ElementContainer(this); // GCP moved from 

constructor 
 
          ToolBoxSwing tbSwing = new ToolBoxSwing();// GCP moved 

from constructor 
          // tbElements = new tbElementsAndActions(ecElementContainer); // 

GCP moved from constructor 
 
          tbElementsAndActions = new 

ToolBoxElementsAndActions(ecElementContainer); // GCP moved from 
constructor 

          addElementContainer(this, ecElementContainer); // GCP moved 
from constructor 



88 

 
          this.getContentPane().add("South", txtStatus); // GCP moved from 

constructor 
 
          ecElementContainer.setMoved(); 
          ecElementContainer.paint(this.getGraphics()); 
          ecElementContainer.repaint(); 
          System.out.println(" ecElementContainer.paint() done"); 
          

//System.out.println(UtilRigal.getDebugElementArrayString(aeRetrieved)); 
        } 
        else { 
          System.out.println(" Null object in file"); 
        } 
 
 
      } 
      catch (ClassNotFoundException ex) 
 
 
  public boolean handleEvent (Event e) 
  { 
    // File -> Open menu item begins 
      if (((String) e.arg).equals("Open")) 
      { 
 if (sFileName == null) 
        { 
          … 
 
          this.setVisible( false );// GCP for restore 
          restoreElementContainer(sFilePath + sFileName); 
          this.setVisible( true );// GCP for restore 
 
          … 
 } 
        else // sFileName != null 
        { 
          System.out.println("File->Open called...sFileName != null"); 
          this.setVisible( false );// GCP for restore 
          restoreElementContainer(sFilePath + sFileName); 
          this.setVisible( true );// GCP for restore 
 
 } 



89 

      } 
 
  /** 
   *  
   */ 
  private void freshElementContainer() { 
    if ( ecElementContainer != null ) { 
      //removeElementContainer( this, ecElementCOntainer ); GCP more 

involved 
      getContentPane().removeAll(); 
       
    }//end if 
     
    txtStatus = new TextField(); 
    txtStatus.setEditable(false); 
 
    // **** create a new diagram 
    ecElementContainer = new ElementContainer(this); 
    // ecNew = new ElementContainer(this); 
    ToolBoxSwing tbSwing = new ToolBoxSwing(); 
    // tbElements = new tbElementsAndActions(ecElementContainer); 
    tbElementsAndActions = new 

ToolBoxElementsAndActions(ecElementContainer); 
    addElementContainer(this, ecElementContainer); 
    this.getContentPane().add("South", txtStatus); 
     
         
  }//end freshElementContainer() 
 
 
  // constructor used in application 
  public RigalFrame(String title) 
  { 
 … 
      fdOpen = new FileDialog(this,"Open Diagram", FileDialog.LOAD); 
      fdOpen.setFilenameFilter(new EndsWith(".BIN")); 
      // fdOpen.setFilenameFilter("*.TXT"); 
    } 
 
    freshElementContainer();// GCP allow element containers to be 

reinitialized for "NEW and "OPEN" 
     
    // this.getContentPane().add("West", tbActions); 



90 

Changes for signature restore, in ElementContainer 
 
  public void paint(Graphics g) 
  { 
    … 
    if (dcaf == null) 
      { 
        System.out.println("new dcaf is created "); 
        dcaf = new DialogContainerAndFrame(getRigalFrame(), this); 
        dcaf.getInputPortCombo().setSelectedIndex(1); 
        dcaf.getOutputPortCombo().setSelectedIndex(0); 
        dcaf.setInputPortIndex(1); 
        dcaf.setOutputPortIndex(0); 
        if ( sSignature != null ) {// GCP to maintain signature during restore 
          dcaf.setDiagramSignature( sSignature ); 
        }// end if else follows 
        else {// GCP to initialize signature for first time 
          dcaf.setDiagramSignature("Diagram Signature: null"); 
        }//end else 
 
        paintDiagramSignature(g, dcaf.getDiagramSignature()); 
      } 
      else 
      { 
        paintDiagramSignature(g, dcaf.getDiagramSignature()); 
      } 
  }//end paint() 
 
 
 
Changes for progressive thickness of nested elements, in Element 
 
  public void paint(Graphics g) 
  { 
    // System.out.println("*Element.paint(Graphics g) is called*"); 
    Polygon poly = new Polygon(polyPolygon.xpoints, polyPolygon.ypoints, 

polyPolygon.npoints); 
 
 
    for (int i=0; i<poly.npoints-1; i++) 
    { 
      poly.xpoints[i] -= ecElementContainer.getOffsetX(); 
      poly.ypoints[i] -= ecElementContainer.getOffsetY(); 
      // g.drawLine(poly.xpoints[i], poly.ypoints[i], poly.xpoints[i+1], 

poly.ypoints[i+1])); 
    } 



91 

    // g.drawPolyline(poly); 
    // GCP line thickness control for nested nodes and stream connector 
    Graphics2D g2 = (Graphics2D) g;// GCP switch graphics engine so we can 

control thickness 
 
    int thickness = 1;// GCP default thickness 
    if (this instanceof ElementData) {// GCP special case for nested thickness 
      thickness += elementTreeLevel( 0 , ecElementContainer );// GCP add 

additional thickness if needed 
    } 
 
    BasicStroke wideStroke = new BasicStroke ( (float) thickness );// GCP select 

line width to show nesting 
    g2.setStroke( wideStroke);// GCP set line width to show nesting 
     
    g2.drawPolyline(polyPolygon.xpoints, polyPolygon.ypoints, 

polyPolygon.npoints);// GCP change to g2 
  } 
 
  /** Recursive method to find a nested element depth from its root parent or; the 
   * number obtained by starting from 0 with the outer element and counting in to 

the 
   * nested element.  Used for determining nested element line thickness.  Initially 

called with 
   * 0 or result inaccurate. 
   * @return distance from parent of this nested element 
   * @param total Seed value of zero, used to collect number of levels 
   * @param tempEC Element container passed to save recursive queries for same 

info. 
   */ 
  private int elementTreeLevel( int total , ElementContainer tempEC ) { 
        // Final parent drops through and returns with no change 
        if ( this.getNested()) {// others call immediate parent recursively 
          int parentID = this.getNestParentId();// get parent 
          Element parent = tempEC.getElementWithId( tempEC , parentID ); 
          // find level of parent 
          // add 1 for this instance and pass it back 
          total = parent.elementTreeLevel( 0 , tempEC ) + 1 ; 
        } 
        return total; 
  }//end elementTreeLevel() 
 

 in ElementContainer 
  public void processNestedElement(Element eTemp){// Assumes nested 
    Element eNest = null; 
    int iNestId = getNestId(eTemp); 



92 

 
    eTemp.setNestId(iNestId);  // called once 
    System.out.println("getNestId(eTemp): " + iNestId); // called twice 
    eNest = getNestElement(eTemp); // called thrice 
    System.out.println("eNest: " + eNest); 
    if(eNest != null){ 
      eTemp.setNested(true);// GCP more correct place, only nested if there is a 

parent 
      eNest.getNestVector().add(eTemp); 
      eNest.setHasChild(true); 
    } 
  }//end processNestedElement() 
 
 
 
  public void addConnectorElement(ElementConnector ecNew, Port portStart, 

Port portEnd){ 
   // System.out.println("add new databox"); 
        // System.out.println("\n****DBGS****" + ecNew.getDebugString()); 
        upsizeArrayOfElementsInElementContainer(); 
 aElementsInElementContainer[iIndexOfElementsInElementContainer] = 

ecNew; 
 eElement = 

aElementsInElementContainer[iIndexOfElementsInElementContainer]; 
        if (ecNew instanceof ElementConnector) {// GCP add streams 
          eElement.setType("Connector"); 
          eElement.setElementTypeId(ConstantsElement.iCONNECTOR_NODE); 
  
        }//end if, else follows 
        else { 
          eElement.setType("Stream"); 
          eElement.setElementTypeId(ConstantsElement.iSTREAM_NODE); 
        }//end if-else GCP add streams 
         
        iIndexOfElementsInElementContainer++; 
 
 
Changes for Stream Connector, in ConstantsElement 
 
  // node ids 
  public final static int iDEFAULT_NODE  = 0; 
  public final static int iDATA_NODE  = 1; 
  public final static int iFORK_NODE  = 2; 
  public final static int iMERGE_NODE  = 3; 
  public final static int iSWITCH_NODE  = 4; 
  public final static int iCONTAINER_NODE = 5; 



93 

  public final static int iCONNECTOR_NODE = 6; 
  public final static int iPATTERN_NODE = 7; 
  public final static int iDCALL_NODE = 8; 
  public final static int iSTREAM_NODE = 9;// GCP for new stream connector 
 
 
     in Element.paint() 
    if (this instanceof ElementData) {// GCP special case for nested thickness 
      thickness += elementTreeLevel( 0 , ecElementContainer );// GCP add 

additional thickness if needed 
    }else if (this instanceof ElementStream){// GCP add stream stem attempt 
      thickness = 10; 
      g2.setColor(Color.green.brighter()); 
    }//end else if 
 
    BasicStroke wideStroke = new BasicStroke ( (float) thickness );// GCP select 

line width to show nesting 
    g2.setStroke( wideStroke);// GCP set line width to show nesting 
 
    g2.drawPolyline(polyPolygon.xpoints, polyPolygon.ypoints, 

polyPolygon.npoints);// GCP change to g2 
 
    wideStroke = new BasicStroke ( (float) 1 );// GCP select line width for 

normal 
    g2.setStroke( wideStroke);// GCP set line width back 
    g2.setColor(Color.black); 
  } 
  
     in ToolBoxElementsAndActions 
 
  public ToolBoxElementsAndActions(ElementContainer ecElementContainer) 
  { 
 … 
   JButton jbConnect = new JButton("Connect"); 
   JButton jbStream = new JButton("Stream");// GCP adds stream connectors 
 … 
                gbc.gridwidth = 1; 
                gbc.gridx = 0; 
                gbc.gridy = 19; 
                gbl.setConstraints(jbExit, gbc); 
                tbElementsAndActions.add(jbExit, gbc); 
 
                gbc.gridwidth = 1;// GCP adding Stream button 
                gbc.gridx = 0; 
                gbc.gridy = 20; 
                gbl.setConstraints(jbStream, gbc); 



94 

                tbElementsAndActions.add(jbStream, gbc); 
 … 
    jbEditPort.addActionListener(bhButtonHandler); 
    jbExit.addActionListener(bhButtonHandler); 
    jbStream.addActionListener(bhButtonHandler);// GCP add Streams  
 
 } 
 
public class ButtonHandler implements ActionListener 
 { 
  RigalFrame rf = null; 
 
   public ButtonHandler(RigalFrame rf) 
   { 
     this.rf = rf; 
   } 
 
   public void actionPerformed(ActionEvent e) 
   { 
      … 
      else if ((e.getActionCommand()).equals("Exit")) 
      { 
        System.exit(0); 
      } 
      else if ((e.getActionCommand()).equals("Stream"))// GCP add Streams 
      { 
 ecElementContainer.setEditorStatusBar(ConstantsStatus.STREAM); 
      } 
   } 
 } 
} 
 
     in ConstantsStatus 
 
  public final static int RESIZE = 117; 
  public final static int EDITPORT  = 118; 
  public final static int STREAM  = 119;// GCP add Streams 
 
     in ElementContainer 
     .getText() 
 
        // print all ElementConnectors 
    ElementConnector ncTemp = null; 
    ElementStream nsTemp = null;// GCP add streams 
    Port portStartTemp = null; 
    Port portEndTemp = null; 



95 

    ps.println(""); 
    for (int i=0; i<iIndexOfElementsInElementContainer; i++) 
    { 
       nTemp = aElementsInElementContainer[i]; 
       if (nTemp != null) 
       { 
         // now print Connector nodes GCP 
         int iElType = nTemp.getElementTypeId();// GCP holds the info for 

comparisons next 
         // GCP connectors or streams 
         if ( ( iElType == ConstantsElement.iCONNECTOR_NODE ) | ( iElType == 

ConstantsElement.iSTREAM_NODE ) ) 
         { 
          if ( iElType == ConstantsElement.iCONNECTOR_NODE ) { 
              //nTemp.printText(ps); 
             ncTemp = (ElementConnector) nTemp; 
             portStartTemp = (Port) ncTemp.getStartPort(); 
             portEndTemp = (Port) ncTemp.getEndPort(); 
 
             if (portStartTemp != null && portEndTemp != null) 
             { 
               ps.println("arrow ( p" + portStartTemp.getParentId() + 

portStartTemp.getId() + 
                                 " p" + portEndTemp.getParentId() + portEndTemp.getId() + 

" )"); 
             } 
          }//end if, else follows 
          else { 
              //nTemp.printText(ps); 
             nsTemp = (ElementStream) nTemp; 
             portStartTemp = (Port) nsTemp.getStartPort(); 
             portEndTemp = (Port) nsTemp.getEndPort(); 
 
             if (portStartTemp != null && portEndTemp != null) 
             { 
               ps.println("stream ( p" + portStartTemp.getParentId() + 

portStartTemp.getId() + 
                                 " p" + portEndTemp.getParentId() + portEndTemp.getId() + 

" )"); 
             } 
          }//end if-else 
 
 
         } 
       } 
    } 



96 

  } 
 
  public Element getObjectWithId(int id) 
 
 
 
  public void setEditorStatusBar(int param) 
  { 
    //LangFrame rfRigalFrame = (LangFrame)getParent(); 
    //if (rfRigalFrame == null) rfRigalFrame = this.rfRigalFrame; 
    if (iCurrentMode == ConstantsStatus.STREAM) {// GCP adds streams 
      System.out.println("Inside setEditorStatusBar(STREAM)"); 
      iCurrentMode = param; 
      bMoved = true; 
      repaint(); 
    }//end if, else follows 
    else if (iCurrentMode == ConstantsStatus.CONNECT) 
    { 
     System.out.println("Inside setEditorStatusBar(CONNECT)"); 
 
 
  public void setEditorStatusBar(int param) 
  { 
 … 
    case ConstantsStatus.CONNECT: 
      rfRigalFrame.setStatus("CONNECT: Select Source Port"); 
      bOutputPortSelected = false; 
      ptAnchorStart = null; 
      startPort = null; 
      endPort = null; 
      repaint(); 
      break; 
 
    case ConstantsStatus.STREAM: // GCP add streams 
      rfRigalFrame.setStatus("STREAM: Select Source Port"); 
      bOutputPortSelected = false; 
      ptAnchorStart = null; 
      startPort = null; 
      endPort = null; 
      repaint(); 
      break; 
 
  public boolean mouseMove(Event evt, int xin, int yin) 
  { 
 … 



97 

     //System.out.println("Mouse MOVE sensed: offset_x =" + offset_x +", 
offset_y= " + offset_x); 

    // GCP add streams 
    if (iCurrentMode == ConstantsStatus.STREAM && bOutputPortSelected) { 
      ptCurrent = new Point(x,y); 
      bMoved = true; 
      repaint(); 
    }//end if, else follows 
    else if (iCurrentMode == ConstantsStatus.CONNECT && 

bOutputPortSelected) 
 
  public boolean mouseDown(Event evt, int xin, int yin) 
  { 
     … 
     rfRigalFrame.setStatus("CONNECT: Select ENDING port"); 
     ptAnchorStart = new Point(startPort.x,startPort.y); 
          } 
          else 
          { 
            rfRigalFrame.setStatus("You must select a SOURCE port first and then a 

DESTINATION port."); 
          } 
 } 
      } 
      break; 
 
      case ConstantsStatus.STREAM:// GCP add streams 
      Port pPortTemp = getSensedPort(x,y); 
      if ((pPortTemp != null &&  pPortTemp.getTypeId() == 

ConstantsRigal.iOUTPUT_PORT_TYPE_ID) || 
      (pPortTemp != null &&  pPortTemp.getTypeId() == 

ConstantsRigal.iON_FAIL_PORT_TYPE_ID)) 
      { 
        System.out.println("Start port clicked, pPortTemp: " + pPortTemp); 
        bOutputPortSelected = true; 
        rfRigalFrame.setStatus("STREAM: Select ENDING port"); 
        ptAnchorStart = new Point(pPortTemp.x,pPortTemp.y); 
        startPort = pPortTemp; 
      } 
      else if (pPortTemp != null && pPortTemp.getTypeId() == 

ConstantsRigal.iINPUT_PORT_TYPE_ID) 
      { 
        endPort = pPortTemp; 
        System.out.println("End port clicked, pPortTemp: " + pPortTemp); 
      } 
 



98 

      iMatchLine = sense(x,y); 
      // if (iMatchLine != -1) System.out.println("PORT match"); 
      // if (iMatchLine != -1  && eElement instanceof ElementPortManager) 
      if (eElement instanceof ElementPortManager) 
      { 
 System.out.println("ConstantsStatus.STREAM MODE, inside 

ElementContainer.mouseDown()"); 
 ElementPortManager npmElementPortManager = (ElementPortManager) 

eElement; 
        // if source port is not already selected 
        if (bOutputPortSelected) 
        { 
   endPort = npmElementPortManager.getSensedPort(); 
          if (startPort != endPort) 
          { 
                if (endPort.getTypeId() == 

ConstantsRigal.iOUTPUT_PORT_TYPE_ID || 
                endPort.getTypeId() == ConstantsRigal.iON_FAIL_PORT_TYPE_ID) 
                { 
                    upsizeArrayOfElementsInElementContainer(); 
                    System.out.println("endPort.isConnected(): " + 

endPort.isConnected()); 
                    System.out.println("startPort.isConnected(): " + 

startPort.isConnected()); 
                    System.out.println("endPort.getTypeId(): " + endPort.getTypeId()); 
 
                    if (endPort.isConnected()) 
                    { 
                      endPort.disconnect(); 
                    } 
                    if (startPort.isConnected()) 
                    { 
                      startPort.disconnect(); 
                    } 
                   // draw new arrow if source and dest ports are different 
                   ElementStream cConn = new ElementStream(this, new 

Point(startPort.x,startPort.y), 
                                         new Point(endPort.x,endPort.y)); 
 
                    addConnectorElement(cConn, startPort, endPort); 
         } 
                  setEditorStatusBar(ConstantsStatus.STREAM); 
          } 
          else 
          { 



99 

            rfRigalFrame.setStatus("Please select a destination port. You must select a 
SOURCE port " + 

            " first and then a DESTINATION port."); 
          } 
 } 
 else 
        { // source port is not selected yet, create source port 
    startPort = npmElementPortManager.getSensedPort(); 
           // System.out.println("startPort: " + startPort); 
           System.out.println("startPort.getTypeId(): " + startPort.getTypeId()); 
           System.out.println("startPort.getTypeId(): " + startPort.getTypeId()); 
 
          if (startPort.getTypeId() == ConstantsRigal.iINPUT_PORT_TYPE_ID || 
              startPort.getTypeId() == ConstantsRigal.iON_FAIL_PORT_TYPE_ID) 
          { 
            bOutputPortSelected = true; 
     rfRigalFrame.setStatus("STREAM: Select ENDING port"); 
     ptAnchorStart = new Point(startPort.x,startPort.y); 
          } 
          else 
          { 
            rfRigalFrame.setStatus("You must select a SOURCE port first and then a 

DESTINATION port."); 
          } 
 } 
      } 
      break; 
 
      default: 
 
 
   // inside mouseUp() 
   case ConstantsStatus.CONNECT: 
      rfRigalFrame.setCursor(Frame.DEFAULT_CURSOR); 
      ptCurrent = null; 
      ptAnchorEnd = null; 
      //ptAnchorStart  = null; 
      iMatchLine = -1; 
      matchdrag = false; 
      return true; 
       
       // inside mouseUp() 
   case ConstantsStatus.STREAM:// GCP add streams 
      rfRigalFrame.setCursor(Frame.DEFAULT_CURSOR); 
      ptCurrent = null; 
      ptAnchorEnd = null; 



100 

      //ptAnchorStart  = null; 
      iMatchLine = -1; 
      matchdrag = false; 
      return true; 
 
 
       .paint() 
      // set the arrowhead from the current point if it is adjacent or 
      // keep the arrowhead unchanged 
 
    } 
    else if (iCurrentMode == ConstantsStatus.DRAWLINE || iCurrentMode == 

ConstantsStatus.CONNECT || iCurrentMode == ConstantsStatus.STREAM) 
    {// GCP add stream 
 
 
      in ElementPortManger 
 
  public synchronized Element sense(int x, int y) 
  { 
      if (ecElementContainer.getMode() == ConstantsStatus.CONNECT || 
          ecElementContainer.getMode() == ConstantsStatus.EDITPORT || 
          ecElementContainer.getMode() == ConstantsStatus.STREAM )// GCP add 

streams 
 
 
  public void paint(Graphics g) 
  { 
     super.paint(g); 
    //System.out.println("**ElementPortManager.paint(g) is called**"); 
    //System.out.println("polyPolygon: " + polyPolygon); 
 
//    if () 
  //  { 
 
    //} 
    //else 
    // GCP redundant draw routine if (polyPolygon != null) 
    // GCP { 
    // GCP   //System.out.println("polyPolygon is NULL"); 
    // GCP   for (int i=1; i<polyPolygon.npoints; i++) 
    // GCP   { 
    // GCP     UtilGraphics.drawLine(g,polyPolygon.xpoints[i-1] - 

ecElementContainer.getOffsetX() 
    // GCP                           ,polyPolygon.ypoints[i-1] - 

ecElementContainer.getOffsetY(), 



101 

    // GCP                           polyPolygon.xpoints[i] - 
ecElementContainer.getOffsetX(), 

    // GCP                           polyPolygon.ypoints[i] - 
ecElementContainer.getOffsetY(), iThick); 

    // GCP   } 
    // GCP } 
    //if (ecElementContainer.getMode() == ConstantsStatus.CONNECT || 
 
 
ElementStream Class ##########################################  
 
package visualrigal; 
 
import java.awt.*; 
import java.util.*; 
import java.io.*; 
 
/** 
 * Title: 
 * Description: with better stream arrow graphics- ports are visible, no labels 
 * Copyright:    Copyright (c) 2002 
 * Company: 
 * @author 
 * @version 1.0 
 */ 
 
public class ElementStream extends ElementConnector 
implements java.io.Serializable { 
 
    double AngleHead = 0; 
    double AngleTail= 0; 
    double Delta_X_Head = 0; 
    double Delta_X_Tail = 0; 
    double size = 50.0; 
    private transient DialogElementProperties dnp = null; 
    double headLineShift = 3.0; 
    double tailLineShift = 2.4; 
 
  public ElementStream(ElementContainer ecElementContainer, Point ptStart, 

Point ptEnd) { 
    super( ecElementContainer,  ptStart,  ptEnd); 
    iElementTypeId = ConstantsElement.iSTREAM_NODE; 
  } 
 
 
   // this is the method that is called after a stream is created 



102 

 // when you connect two ports, in the STREAM mode 
  public void paint(Graphics g) 
  { 
    int pointTotal = 0;//to remember how many points we have 
    Point head = null, tail = null,//to hold the original values 
          midPoint = null,//hold the arrowhead base midpoint 
          EndPoint1 = null, EndPoint2 = null;//holds arrowhead base endpoints 
 
    //System.out.println("****** Begin ElementConnector.paint()"); 
 
    //g.fillPolygon(polyPolygon); 
 
    if (polyArrowhead == null) 
    { 
      polyArrowhead = getElementConnectorArrowhead(); 
      getTailAngle(); 
    } 
 
    //Thick line requires a shift from the endpoints to look correct, 
    //not stick out of arrowhead obscuring port 
 
    //save head point 
    pointTotal = polyPolygon.npoints; 
    head = new Point( polyPolygon.xpoints[pointTotal-1] , 

polyPolygon.ypoints[pointTotal-1] ); 
 
    //replace with arrowhead base midpoint 
    EndPoint1 = new Point( polyArrowhead.xpoints[2] , polyArrowhead.ypoints[2] 

);//the last point in the arrowhead 
    EndPoint2 = new Point( polyArrowhead.xpoints[1] , polyArrowhead.ypoints[1] 

);//the middle point in the arrowhead 
 
    midPoint = midpoint( EndPoint1 , EndPoint2 ); 
 
    //shift down the line from the head toward the tail because of thickness overlap 
    if (Delta_X_Head >= 0) {//because of different behavior +x vs. -x 
 
      //head side shift 
      midPoint.x += ( ( size / headLineShift ) * ( Math.cos ( AngleHead ) ) ); 
      midPoint.y += ( ( size / headLineShift ) * ( Math.sin ( AngleHead ) ) ); 
 
    }//end if, else follows 
    else { 
 
      //head side shift 
      midPoint.x -= ( ( size / headLineShift ) * ( Math.cos ( AngleHead ) ) ); 



103 

      midPoint.y -= ( ( size / headLineShift ) * ( Math.sin ( AngleHead ) ) ); 
 
    }//end if-else 
 
    //Temporarily assign the shifted point 
    polyPolygon.xpoints[pointTotal-1] = midPoint.x; 
    polyPolygon.ypoints[pointTotal-1] = midPoint.y; 
 
    //Now do the tail end 
    //save tail point 
    tail = new Point( polyPolygon.xpoints[0] , polyPolygon.ypoints[0] ); 
 
    //at the same time shift up the line from the tail toward the head for the same 

reason 
    if (Delta_X_Tail >= 0) {//because of different behavior +x vs. -x 
 
      //tail side shift 
      polyPolygon.xpoints[0] -= (int)( ( size / tailLineShift ) * ( Math.cos ( 

AngleTail ) ) ); 
      polyPolygon.ypoints[0] -= (int)( ( size / tailLineShift ) * ( Math.sin ( 

AngleTail ) ) ); 
 
    }//end if, else follows 
    else { 
 
      //tail side shift 
      polyPolygon.xpoints[0] += (int)( ( size / tailLineShift ) * ( Math.cos ( 

AngleTail ) ) ); 
      polyPolygon.ypoints[0] += (int)( ( size / tailLineShift ) * ( Math.sin ( 

AngleTail ) ) ); 
 
    }//end if-else 
 
    super.paint(g); 
 
   //put the original head point back in the polygon 
    polyPolygon.xpoints[pointTotal-1] = head.x; 
    polyPolygon.ypoints[pointTotal-1] = head.y; 
 
    //put the original tail point back in the polygon 
    polyPolygon.xpoints[0] = tail.x; 
    polyPolygon.ypoints[0] = tail.y; 
 
    if (polyArrowhead != null) 
    { 
      g.setColor(Color.green.brighter()); 



104 

      g.fillPolygon(polyArrowhead); 
      g.setColor(Color.black); 
      Polygon p = new Polygon(polyArrowhead.xpoints, polyArrowhead.ypoints, 

polyArrowhead.npoints); 
 
      for (int i=0; i<p.npoints; i++) 
      { 
 p.xpoints[i] -= ecElementContainer.getOffsetX(); 
 p.ypoints[i] -= ecElementContainer.getOffsetY(); 
      } 
      //g.fillPolygon(p); 
    } 
    //g.setColor(Orig); 
/* 
   System.out.println("arrow 

="+polyArrowhead+"NP="+polyArrowhead.npoints); 
    for (int I=0; I<polyArrowhead.npoints; I++) 
      System.out.println("x="+polyArrowhead.xpoints[I]+" 

Y="+polyArrowhead.ypoints[I]); 
*/ 
   // System.out.println("****End ElementConnector.paint()"); 
 } 
 
 
   public Polygon getElementConnectorArrowhead() 
  { 
    Polygon poly = new Polygon(); 
    // add the first_point 
    poly.addPoint(ptEnd.x, ptEnd.y); 
    Delta_X_Head = (double)(polyPolygon.xpoints[polyPolygon.npoints-2] -

polyPolygon.xpoints[polyPolygon.npoints-1]); 
    double Delta_Y = (double)(polyPolygon.ypoints[polyPolygon.npoints-2] -

polyPolygon.ypoints[polyPolygon.npoints-1]); 
 
 
    if (Delta_X_Head == 0) 
      AngleHead = Math.PI/2.0; 
    else 
      AngleHead = Math.atan(Delta_Y/Delta_X_Head); // + Math.PI/2; 
    //System.out.println("Segment 01: DX="+Delta_X_Head+" DY="+Delta_Y+" 

angle "+AngleHead); 
 
    if (Delta_X_Head >= 0) 
    { 
      int X = (int)((double)ptEnd.x + (size * Math.cos(AngleHead - Math.PI/4.0))); 
      int Y =(int)((double) ptEnd.y + (size * Math.sin(AngleHead - Math.PI/4.0))); 



105 

      poly.addPoint(X,Y); 
    //System.out.println("Segment 02: X="+X+" Y="+Y); 
      X = (int)((double)ptEnd.x + (size * Math.cos(AngleHead + Math.PI/4.0))); 
      Y = (int)((double)ptEnd.y + (size * Math.sin(AngleHead + Math.PI/4.0))); 
      poly.addPoint(X,Y); 
      // close the arrowhead triangle, repeat first_point as end_point 
      poly.addPoint(ptEnd.x, ptEnd.y); 
   // System.out.println("Segment 03: X="+X+" Y="+Y); 
    } 
    else 
    { 
      int X = (int)((double)ptEnd.x - (size * Math.cos(AngleHead - Math.PI/4.0))); 
      int Y =(int)((double) ptEnd.y - (size * Math.sin(AngleHead - Math.PI/4.0))); 
      poly.addPoint(X,Y); 
    //System.out.println("Segment 04: X=" + X + " Y=" + Y); 
      X = (int)((double)ptEnd.x - (size * Math.cos(AngleHead + Math.PI/4.0))); 
      Y = (int)((double)ptEnd.y - (size * Math.sin(AngleHead + Math.PI/4.0))); 
      poly.addPoint(X,Y); 
      // close the arrowhead triangle, repeat first_point as end_point 
      poly.addPoint(ptEnd.x, ptEnd.y); 
   // System.out.println("Segment 05: X="+X+" Y="+Y); 
   } 
  //  System.out.println("Segment 06: X="+ptEnd.x+" Y="+ptEnd.y); 
 
    return poly; 
 } 
 /** 
  * Return midpoint of line between two given points 
  */ 
 private Point midpoint( Point point1, Point point2  ) { 
    Point answer = new Point(); 
    int Diff_X = ( point1.x - point2.x ); 
    int Diff_Y = ( point1.y - point2.y ); 
 
    answer.x = point2.x + ( Diff_X / 2 ); 
    answer.y = point2.y + ( Diff_Y / 2 ); 
 
    return answer; 
 }//end midpoint() 
 
  public DialogElementProperties getDialog(){ 
 
     return dnp; 
  } 
 
 



106 

  /** 
   * Find tail segment information to make port visible by line correction 
   */ 
  private void getTailAngle() { 
 
    Delta_X_Tail = (double)(polyPolygon.xpoints[0] -polyPolygon.xpoints[1]); 
    double Delta_Y = (double)(polyPolygon.ypoints[0] -polyPolygon.ypoints[1]); 
 
 
    if (Delta_X_Tail == 0) 
      AngleTail = Math.PI/2.0; 
    else 
      AngleTail = Math.atan(Delta_Y/Delta_X_Tail); // + Math.PI/2; 
 
  }//end getTailAngle() 
 
}//end class ElementStream 
 
 
Changes for nesting pattern boxes, add to ElementPattern 
 
  public Rectangle getBounds(){//prevented nesting 
    Rectangle rectRetVal = null; 
    rectRetVal = new Rectangle(this.getX(), this.getY(), this.getWidth(), 

this.getHeight()); 
 
    return rectRetVal; 
  } 
 
  public int getX()//prevented proper nested movement 
  { 
    return (int) ptStart.getX(); 
  } 
 
  public int getY() 
  { 
    return (int) ptStart.getY(); 
  } 
 
     
add proper nesting pattern boxes printText, ElementPattern 
 
  // print all parent data boxes, call nested print if needed 
  public void printText(PrintStream ps) 
  { 
      if(!this.getNested()) 



107 

      { 
          Vector vMyChildren = new Vector(); 
          vMyChildren = getNestVector(); 
 
          System.out.println("printText called from ElementPattern"); 
          ps.println(""); 
          ps.println("pattern_box ("); 
          ps.println("   inp_port_names (" + getInputPortNames() + ")"); 
          ps.println("   inp_port_ids (" + getInputPortIds() + ")"); 
          ps.println("   out_port_ids (" + getOutputPortIds() + ")"); 
          ps.println("   expr " + this.getCaption()); 
          for(int i = 0; i < vMyChildren.size() ; i++){ 
              ((ElementPattern) vMyChildren.elementAt( i ) ).printNestText(ps,1);; 
          } 
          ps.println(")"); 
          ps.println(""); 
      } 
  } 
 
//recursively print nested children, tabing based on current layer 
  public void printNestText(PrintStream ps, int numberOfTabs) { 
      Vector vMyChildren = new Vector(); 
      vMyChildren = getNestVector(); 
 
      ps.println(""); 
      printTabs(ps, numberOfTabs); 
      ps.println("pattern_box ("); 
      printTabs(ps, numberOfTabs); 
      ps.println("   inp_port_names (" + getInputPortNames() + ")"); 
      printTabs(ps, numberOfTabs); 
      ps.println("   inp_port_ids (" + getInputPortIds() + ")"); 
      printTabs(ps, numberOfTabs); 
      ps.println("   out_port_ids (" + getOutputPortIds() + ")"); 
      printTabs(ps, numberOfTabs); 
      ps.println("   expr " + this.getCaption()); 
      for(int i = 0; i < vMyChildren.size() ; i++){ 
          ((ElementPattern) vMyChildren.elementAt( i ) ).printNestText(ps , 

numberOfTabs + 1 ); 
      } 
      printTabs(ps, numberOfTabs); 
      ps.println(")"); 
      ps.println(""); 
  } 
 
//prints given number  of 3 space tabs to stream 
  public void printTabs( PrintStream ps,int numberOfTabs) { 



108 

      for(int i = 0 ; i < numberOfTabs ; i++ ){ 
          ps.print("   "); 
      } 
  } 
 
add dialog boxes for nested pattern boxes, in ElementContainer 
 
  public void showDialogByElement(Element eElement) 
  { 
    … 
      else if (eElement.getElementTypeId() == 

ConstantsElement.iPATTERN_NODE) 
      { 
        ElementPattern nPolymorphic = (ElementPattern) eElement; 
        DialogElementProperties dnpTemp = nPolymorphic.getDialog(); 
        if (dnpTemp != null) 
        { 
          System.out.println("dnpTemp is NOT null"); 
          dnpTemp.showDialog(); 
        } 
        else 
        { 
          dnpTemp = new DialogElementProperties(rfRigalFrame,nPolymorphic); 
          dnpTemp.showDialog(); 
        } 
      } 
      else if (eElement.getElementTypeId() == 

ConstantsElement.iDCALL_NODE) 
 
delete nested boxes from parent child vector so they do not print out from 

there, in ElementContainer 
 
  public synchronized void deleteObjectWithId(int id) 
  { 
    int i; 
    for (i=0; i<iIndexOfElementsInElementContainer; i++) 
    { 
      if (aElementsInElementContainer[i].getId() == id) 
      { 
        if( aElementsInElementContainer[i].getNested() ){//GCP if nested 
          Element eParentOfDeleting = 

aElementsInElementContainer[i].getNestElement(); 
          Vector vParentVector = eParentOfDeleting.getNestVector(); 
          Element eDeletingElement = getElementWithId( this,id ); 
          vParentVector.remove( eDeletingElement );//GCP remove nest reference 

in parent 



109 

 
          Vector vVectorOfChildren = eDeletingElement.getNestVector(); 
          Iterator iterChildVector = vVectorOfChildren.iterator(); 
          Element eChild = null; 
 
          while ( iterChildVector.hasNext() ) {//GCP add children to  grand-parent 
            eChild = (Element) iterChildVector.next(); 
            vParentVector.add( eChild ); 
            eChild.setNestId( eParentOfDeleting.getId() ); 
          } 
            //GCP reorder vParentVector 
        }else{//GCP top level element 
            if ( aElementsInElementContainer[i].hasChild() ) {//GCP with children 
 
              Element eDeletingElement = getElementWithId( this,id ); 
              Iterator vDeletingChildren = 

eDeletingElement.getNestVector().iterator(); 
              Element eElement = null;//GCP holding site 
              //make them top level elements 
              while ( vDeletingChildren.hasNext() ) { 
 
         eElement =  (Element) vDeletingChildren.next(); 
                eElement.setNested( false ); 
                eElement.setNestId( -1 ); 
              }//end while 
 
            }//end if has child 
 
        }//end if-else 
 
 aElementsInElementContainer[i] = null; 
 break; 
      }// end if id 
    }// end for i 
 
    if (aElementsInElementContainer[i] == null) 
 
 
Encapsulate stream and nesting thickness data and pattern box graphics, 

Element 
 
  public void paint(Graphics g) 
  { 
    // System.out.println("*Element.paint(Graphics g) is called*"); 
    Polygon poly = new Polygon(polyPolygon.xpoints, polyPolygon.ypoints, 

polyPolygon.npoints); 



110 

 
 
    for (int i=0; i<poly.npoints-1; i++) 
    { 
      poly.xpoints[i] -= ecElementContainer.getOffsetX(); 
      poly.ypoints[i] -= ecElementContainer.getOffsetY(); 
      // g.drawLine(poly.xpoints[i], poly.ypoints[i], poly.xpoints[i+1], 

poly.ypoints[i+1])); 
    } 
    // g.drawPolyline(poly); 
 
    g.drawPolyline(polyPolygon.xpoints, polyPolygon.ypoints, 

polyPolygon.npoints);// GCP change to g2 
 
  } 
 
      In ElementData and 

ElementPattern 
 
  public void paint(Graphics g) 
  { 
    // System.out.println("*ElementData.paint(Graphics g) is called*"); 
 
    // GCP line thickness control for nested nodes 
    Graphics2D g2 = (Graphics2D) g;// GCP switch graphics engine so we can 

control thickness 
 
    int thickness = 1;// GCP default thickness 
    thickness += elementTreeLevel( 0 , ecElementContainer );// GCP add 

additional thickness if needed 
 
    BasicStroke wideStroke = new BasicStroke ( (float) thickness );// GCP select 

line width to show nesting 
    g2.setStroke( wideStroke);// GCP set line width to show nesting 
 
    super.paint(g2); 
 
    thickness = 1;// GCP return to default thickness 
    wideStroke = new BasicStroke ( (float) thickness );// GCP select default 

thickness 
    g2.setStroke( wideStroke);// GCP set line width to default thickness 
    g2.setColor(Color.black);// GCP set default color 
  } 
 
 
      In ElementStream 



111 

  public void paint(Graphics g) 
  { 
    … 
 
    else { 
 
      //tail side shift 
      polyPolygon.xpoints[0] += (int)( ( size / tailLineShift ) * ( Math.cos ( 

AngleTail ) ) ); 
      polyPolygon.ypoints[0] += (int)( ( size / tailLineShift ) * ( Math.sin ( 

AngleTail ) ) ); 
 
    }//end if-else 
 
    // GCP line thickness control for stream connector 
    Graphics2D g2 = (Graphics2D) g;// GCP switch graphics engine so we can 

control thickness 
 
    g2.setColor(Color.green.brighter()); 
 
    int thickness = 40;//GCP width of stream line 
    BasicStroke wideStroke = new BasicStroke ( (float) thickness );// GCP select 

line width 
    g2.setStroke( wideStroke);// GCP set line width 
 
    super.paint(g2); 
 
    thickness = 1;// GCP back to default thickness 
 
    wideStroke = new BasicStroke ( (float) thickness );// GCP select line width to 

normal 
    g2.setStroke( wideStroke);// GCP set line width to normal 
    g2.setColor(Color.black); 
 
   //put the original head point back in the polygon 
 
Add signature to text file, in ElementContainer 
 
  public void getText(PrintStream ps) 
  { 
    ps.println("name      " + this.getCaption()); 
    ps.println("signature (" + this.getSignature()+ ")");//GCP add signature 
    ps.println(""); 
    ps.println("input_ports  ("+ncp.getInputPortIds()+")"); 
 
 



112 

 
Ordered nested boxes, Element 
 
 
  /** 
   * Called to reassess the ordering of nested boxes in the parent vNestVector, 
   * should contain this 
   * This moved or was added so update order 
   */ 
  public void reorderNestVector() { 
    if ( this.getNested() ) {//if a parent then sort 
       Element temp = null;//holding space for swap 
 
      Element parent = (Element) getNestElement();//find parent 
      Vector vNestVector = parent.getNestVector();// the vector that needs ordering 
 
      int numberInVector = vNestVector.size(); 
 
      //bubble sort 
      for(int i = 0 ; i < numberInVector - 1 ; i++){ 
        for (int j = 0 ; j < numberInVector - 1 - i ; j++ ) { 
 
          //comparator call 
          if ( ( (Element) vNestVector.get( j )).follows( ( (Element) vNestVector.get( 

j + 1 ) ) ) ) { 
            //Swap 
            temp = ( (Element) vNestVector.get( j )); 
            vNestVector.set( j , vNestVector.get( j + 1 ) ) ; 
            vNestVector.set( j + 1 , temp ) ; 
          }//end if 
 
        }//end for j 
 
      }//end for i END bubble sort 
 
 
    }//end if 
    //else no parent- do nothing 
 
  }//end reorderNestVector() 
 
 
  /** 
   * comparator for determining vNestVector ordering of nested boxes 
   * returns true if this should follow next in ordering, 
   * returns false otherwise 



113 

   */ 
  private boolean follows( Element next ) { 
 
    boolean answer = false;// default response 
 
      Point pointA = null, pointB = null; 
      //load pointB with next position points for comparison 
      pointB = next.getStartPoint(); 
      //load pointA with this 
      pointA = this.getStartPoint(); 
 
      //comparing top left corners, the one further right on the x-axis follows unless 
      //they are equal with respect to the x-axis then the one further down on the y-

axis 
      //follows 
      if ( ( pointA.x > pointB.x ) || ( ( pointA.x == pointB.x ) && ( pointA.y > 

pointB.y) ) ) { 
        answer = true; 
 
      }//end if 
 
      return answer; 
 
  }//end follows() 
 
     In ElementContainer 
 
  public void processNestedElement(Element eTemp){// Assumes nested 
    Element eNest = null; 
    int iNestId = getNestId(eTemp); 
 
    eTemp.setNestId(iNestId);  // called once 
    System.out.println("getNestId(eTemp): " + iNestId); // called twice 
    eNest = getNestElement(eTemp); // called thrice 
    System.out.println("eNest: " + eNest); 
    if(eNest != null){ 
      eTemp.setNested(true);// GCP more correct place, only nested if there is a 

parent 
      eNest.getNestVector().add(eTemp); 
      eNest.setHasChild(true); 
 
      eTemp.reorderNestVector(); //GCP check nested ordering each time a new 

element is nested 
    } 
  }//end processNestedElement() 
 



114 

 
  public boolean mouseUp(Event evt, int xin, int yin ) 
  { 
   System.out.println("Mouse UP sensed"); 
   System.out.println("Mouse UP sensed"); 
   int x = xin + offset_x; 
   int y = yin + offset_y; 
 
   System.out.println("mouseUp, iCurrentMode: " + iCurrentMode); 
    switch(iCurrentMode) 
    { 
       case ConstantsStatus.MOVE_ELEMENT: 
          if ( eElement.getNested() ) { 
            eElement.reorderNestVector();//GCP check nested order after a move 
          }//end if 
 
          break; 
 
    case ConstantsStatus.DATA_ELEMENT: // 103 
 
 
 
 
 
 
 
Add AltPattern, ToolBoxElementsAndActions 
 
   JButton jbFork = new JButton("Fork"); 
   JButton jbAltPattern = new JButton("Alt Pattern");// GCP adds alt patterns 
   JButton jbPattern = new JButton("Pattern"); 
    
 
                gbc.gridwidth = 1;// GCP adding Stream button 
                gbc.gridx = 0; 
                gbc.gridy = 20; 
                gbl.setConstraints(jbStream, gbc); 
                tbElementsAndActions.add(jbStream, gbc); 
 
                gbc.gridwidth = 1;// GCP adding AltPattern button 
                gbc.gridx = 0; 
                gbc.gridy = 21; 
                gbl.setConstraints(jbAltPattern, gbc); 
                tbElementsAndActions.add(jbAltPattern, gbc); 
 
 



115 

    jbFork.addActionListener(bhButtonHandler); 
    jbAltPattern.addActionListener(bhButtonHandler);// GCP add altPatterns 
    jbMerge.addActionListener(bhButtonHandler); 
 
 
      else if ((e.getActionCommand()).equals("Fork")) 
      { 
 ecElementContainer.setEditorStatusBar(ConstantsStatus.FORK); 
      } 
      else if ((e.getActionCommand()).equals("Alt Pattern"))// GCP add altpattern 
      { 
 ecElementContainer.setEditorStatusBar(ConstantsStatus.ALT_PATTERN

); 
      } 
      else if ((e.getActionCommand()).equals("Merge")) 
 
       In ConstantStatus 
 
  public final static int STREAM  = 119;// GCP add Streams 
  public final static int ALT_PATTERN  = 120;// GCP add Streams 
   
 
       In ElementContainer 
 
  public boolean mouseDown(Event evt, int xin, int yin) 
  { 
    // System.out.println("Mouse DOWN sensed"); 
    ElementConnector ncElementConnector = null; 
    int x = xin + offset_x; 
    int y = yin + offset_y; 
 
    switch (iCurrentMode) 
    { 
        … 
 
         case ConstantsStatus.FORK: 
        { 
          // System.out.println("execute addForkElement()"); 
          addForkElement(new ElementFork(this, "Fork", new Point(x,y), 10, 70)); 
        } 
        break; 
        case ConstantsStatus.ALT_PATTERN:// GCP add alt pattern 
        { 
          // System.out.println("execute addAltPatternElement()"); 
          addForkElement(new ElementAltPattern(this, "Alt_pattern", new 

Point(x,y), 10, 70)); 



116 

        } 
        break; 
        case ConstantsStatus.SWITCH: 
 
 
  public boolean mouseUp(Event evt, int xin, int yin ) 
  { 
   System.out.println("Mouse UP sensed"); 
   System.out.println("Mouse UP sensed"); 
   int x = xin + offset_x; 
   int y = yin + offset_y; 
 
   System.out.println("mouseUp, iCurrentMode: " + iCurrentMode); 
    switch(iCurrentMode) 
    { 
       … 
    case ConstantsStatus.FORK: 
      { 
         if (bNewDialog) 
          { 
            ElementFork ndTemp = (ElementFork) 

aElementsInElementContainer[iIndexOfElementsInElementContainer-1]; 
            DialogElementProperties dnpTemp = new 

DialogElementProperties(getRigalFrame(), ndTemp); 
            ndTemp.setDialog(dnpTemp); 
            dnpTemp.showDialog(); 
            bNewDialog = false; 
          } 
      } 
      break; 
    case ConstantsStatus.ALT_PATTERN:// GCP add alt pattern 
      { 
         if (bNewDialog) 
          { 
            ElementAltPattern ndTemp = (ElementAltPattern) 

aElementsInElementContainer[iIndexOfElementsInElementContainer-1]; 
            DialogElementProperties dnpTemp = new 

DialogElementProperties(getRigalFrame(), ndTemp); 
            ndTemp.setDialog(dnpTemp); 
            dnpTemp.showDialog(); 
            bNewDialog = false; 
          } 
      } 
      break; 
    case ConstantsStatus.DRAWLINE: 
 



117 

 
 
  public boolean mouseDrag(Event evt, int xin, int yin) 
  { 
    // System.out.println("Mouse DRAG sensed"); 
    int difx, dify; 
    int x = xin + offset_x; 
    int y = yin + offset_y; 
 
    switch (iCurrentMode) 
    { 
    … 
 
   case ConstantsStatus.FORK: 
      ElementFork LocalElementFork = null; 
      if (eElement instanceof ElementFork) { 
 LocalElementFork = (ElementFork)eElement; 
      } 
      LocalElementFork.resize(Math.abs(x-ptAnchorStart.x),Math.abs(y-

ptAnchorStart.y)); 
      repaint(); 
      break; 
 
    case ConstantsStatus.ALT_PATTERN:// GCP add alt pattern 
      ElementAltPattern LocalElementAltPattern = null; 
      if (eElement instanceof ElementAltPattern) { 
 LocalElementAltPattern = (ElementAltPattern)eElement; 
      } 
      LocalElementAltPattern.resize(Math.abs(x-ptAnchorStart.x),Math.abs(y-

ptAnchorStart.y)); 
      repaint(); 
      break; 
 
    case ConstantsStatus.ADDDATABOX:  
 
 
  public void setEditorStatusBar(int param) 
  { 
    … 
 
   switch(iCurrentMode) 
   { 
     … 
    case ConstantsStatus.FORK: 
      rfRigalFrame.setStatus("Current Mode: Add Fork Element"); 
      break; 



118 

    case ConstantsStatus.ALT_PATTERN: 
      rfRigalFrame.setStatus("Current Mode: Add Alt Pattern Element"); 
      break; 
    case ConstantsStatus.RESIZE: 
 
 
 
ElementAltPattern Class####################################### 
 
package visualrigal; 
 
import java.awt.*; 
import java.io.*; 
 
/** 
 * Title: 
 * Description: 
 * Copyright:    Copyright (c) 2002 
 * Company: 
 * @author 
 * @version 1.0 
 */ 
 
public class ElementAltPattern extends ElementFork 
   implements java.io.Serializable { 
 
  public ElementAltPattern(ElementContainer parent, String name, Point ptStart, 

int width, int height) { 
 
    super(parent, name, ptStart, 3, 3); 
    iElementTypeId = ConstantsElement.iFORK_NODE; 
  } 
 
  public ElementAltPattern(ElementContainer parent, String name, Point ptStart, 

int width, int height, int id) 
  { 
    super(parent, name, ptStart, 3, 3, id); 
    iElementTypeId = ConstantsElement.iFORK_NODE; 
  } 
 
  public void printText(PrintStream ps) 
  { 
     System.out.println("printText called from ElementAltPattern"); 
     ps.println(""); 
     ps.println("alt_pattern ( input_port_ids (" + getInputPortIds() + " )"); 
     ps.println("out_port_ids ( " + getOutputPortIds() + " ) )"); 



119 

  } 
 
 
 
  public void resize (int width, int height) 
  { 
    width = 10; 
    //height = 70; 
    this.width = width; 
    this.height = height; 
 
 
    Polygon polyPolygon = new Polygon(); 
    polyPolygon.addPoint(ptStart.x, ptStart.y ); 
    polyPolygon.addPoint(ptStart.x + width, ptStart.y); 
    polyPolygon.addPoint(ptStart.x + width, ptStart.y + height); 
    polyPolygon.addPoint(ptStart.x, ptStart.y + height); 
    polyPolygon.addPoint(ptStart.x, ptStart.y ); 
    this.polyPolygon = polyPolygon; 
 
    cleanAllPorts(); 
    updateElementPorts(); 
  } 
 
    public void paint(Graphics g){ 
    // System.out.println("*ElementALtPattern.paint(Graphics g) is called*"); 
 
    g.setColor(Color.blue);// GCP set color 
 
    super.paint(g); 
 
    g.setColor(Color.black);// GCP set default color 
  }//end ElementAltPattern Class 
 
 
 
 
Fix multi-ports for fork, alt pattern and merge,  DialogElementProperties 
 
 
  public void addButtonListeners() 
  { 
       … 
 
             else if (eElement.getElementTypeId() == 

ConstantsElement.iFORK_NODE) 



120 

             { 
                 ElementFork ndTemp = (ElementFork) eElement; 
                 System.out.println("ndTemp: " + ndTemp); 
                 ndTemp.cleanAllPorts(); 
                 ndTemp.setNoOfInputPorts(iInputPortIndex+1); 
                 ndTemp.setNoOfOutputPorts(iOutputPortIndex+1);// GCP repair fork 

and alt pattern multiple output ports 
                 System.out.println("ndTemp.getTotalNoOfPorts(): " + 

ndTemp.getTotalNoOfPorts()); 
                 System.out.println("ndTemp.getTotalNoOfPorts(): " + 

ndTemp.getTotalNoOfPorts()); 
                 ElementPortManager npTemp = (ElementPortManager) eElement; 
                 npTemp.setNoOfPorts(ndTemp.getTotalNoOfPorts()); 
                 ndTemp.updateElementPorts(); 
             } 
             else if (eElement.getElementTypeId() == 

ConstantsElement.iMERGE_NODE) 
             { 
                 ElementMerge ndTemp = (ElementMerge) eElement; 
                 System.out.println("ndTemp: " + ndTemp); 
                 ndTemp.setNoOfInputPorts(iInputPortIndex+1);// GCP repair merge 

multiple input ports 
                 ndTemp.cleanAllPorts(); 
                 ndTemp.setNoOfOutputPorts(iOutputPortIndex+1); 
                 System.out.println("ndTemp.getTotalNoOfPorts(): " + 

ndTemp.getTotalNoOfPorts()); 
                 System.out.println("ndTemp.getTotalNoOfPorts(): " + 

ndTemp.getTotalNoOfPorts()); 
                 ElementPortManager npTemp = (ElementPortManager) eElement; 
                 npTemp.setNoOfPorts(ndTemp.getTotalNoOfPorts()); 
                 ndTemp.updateElementPorts(); 
            }     
 
 
 
Fix delete connector then add connector deletes previous node from diagram, 

ElementContainer 
 
  public boolean mouseUp(Event evt, int xin, int yin ) 
  { 
   … 
    */ 
    case ConstantsStatus.DELETEOBJECT: 
      if (iMatchLine != -1) 
      { 



121 

 if (eElement instanceof ElementPortManager && !(eElement instanceof 
ElementConnector)){// GCP correct connector delete removes last in diagram replace 
by connector 

 



122 

C. VISUALRIGAL USER’S MANUAL 

 

 
Appearance at initial start-up 

 
The VisualRigal graphical user interface(GUI) appears as shown upon initial start 

up.  The GUI is controlled by menu bars and a mouse.  The primary menu is the Mode 
Tool Bar shown below. 

 



123 

 
Location of Mode Tool Bar 

 
It is further divided into the Add Element Buttons and the Actions on Elements 

Buttons.  An element can be added to the diagram area by clicking the appropriate button 
and then clicking on the diagram.  While holding the button down non-nested elements 
may be resized.  For non-nested elements a properties dialog box will appear with button 
release. 

Nested elements are added by selecting a Nested Data or Nested Pattern button 
and clicking at the location of the intended top left corner for this new element.  If this 
new element is fully enclosed by a like element, it will be nested.  A visual indication of 
success is the progressive thickening of element lines with each level of nesting.  If the 
new element is not fully enclosed by any other element it will not be nested but reside at 
the top level of the diagram.  In all respects this element will be like any other non-nested 
element. 

 Action instructions follow: 
 

Connect- click on a diagram input port or an element output port, pointer turns into a 
hand when over the port.  Drag the line to a diagram output port or an element input port 
and click.  Connection is made. 
Properties- click an element or the diagram background to edit properties. 
Move- click and drag an element by the top left corner into desired position and release. 
Delete- click in an element to delete it from the diagram. 
Resize- click and drag from the bottom right corner to change size of picture. 



124 

Split Line- click and drag on a connector or stream line segment to create an additional 
point on the route described by the line.  This is useful for cleaning up diagrams. 
Edit Port- click on a port to edit its caption.  The pointer turns into a hand when over the 
port. 
Exit- quit application 
Stream- same as connect 
Alt Pattern- incorrectly placed element 

 

 
Add Element Buttons 



125 

 
Actions on an Element Buttons 

 

 



126 

Message Bar 
 
 The message bar shown above displays instructions each step of the way. 
 
Top Menu 
 File Menu 
  New- start with a clean slate 
  Open- restore a previously saved diagram 
  Save Diagram- saves the diagram, may be restored with Open 
  Save Text- saves a text file interface that represents the logical 

equivalent of the diagram.  Cannot be restored from this file. 
  Exit- quit the application 
 Other Menus- currently unused 
 



127 

D. REQUIREMENTS ANALYSIS 

 

 
 
 
 
 
 
 
 

Requirements Analysis 
SW 4583 Project 

 
LT Les Glosby 

Mr. Robert Luna 
Maj. Graham Pierson 

Capt. Ray Pursel 
 

Version 4.2 
18 Jun 04



128 

 

1 INTRODUCTION................................................................................................. 131 
1.1 PURPOSE OF THE SYSTEM ............................................................ 131 
1.2 SCOPE OF THE SYSTEM.................................................................. 131 
1.3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS ................ 131 
1.4 REFERENCES...................................................................................... 131 
1.5 OVERVIEW.......................................................................................... 132 

2 CURRENT SYSTEM ........................................................................................... 132 

3 PROPOSED SYSTEM ......................................................................................... 132 
3.1 OVERVIEW.......................................................................................... 132 
3.2 FUNCTIONAL REQUIREMENTS.................................................... 132 

3.2.1.1 Vision Statement Excerpt .............................................. 132 
3.2.1.2 Vision Statement Analysis ............................................. 133 
3.2.1.3 Lab Demonstration Analysis ......................................... 133 

3.3 NONFUNCTIONAL REQUIREMENTS........................................... 133 
3.3.1 Implementation ......................................................................... 133 

3.4 SYSTEM MODELS.............................................................................. 133 
3.4.1 Scenarios .................................................................................... 133 

3.4.1.1 editElement..................................................................... 134 
3.4.1.2 operateW/oMouse........................................................... 135 
3.4.1.3 createTestNest ................................................................ 135 
3.4.1.4 deleteElement ................................................................. 136 
3.4.1.5 buildComponent ............................................................. 136 
3.4.1.6 generateCodeErroneousDiagram.................................. 139 

3.4.2 Use case model........................................................................... 139 
3.4.2.1 runCode .......................................................................... 140 
3.4.2.2 startProgram .................................................................. 140 
3.4.2.3 displayCurrentNode ....................................................... 140 
3.4.2.4 loadDiagram................................................................... 140 
3.4.2.5 saveDiagram................................................................... 140 
3.4.2.6 GenerateCode ................................................................. 140 
3.4.2.7 displayError.................................................................... 141 
3.4.2.8 editdiagram..................................................................... 142 
3.4.2.9 create............................................................................... 142 

3.4.2.9.1........................................... createConnector
 142 

3.4.2.9.1.1 ........................................................................................... CreateStreamConnector
 143 

3.4.2.9.1.2 .......................................................................................CreateDataFlowConnector
 144 

3.4.2.9.1.3 ..................................................................................................... createAssociation
 145 

3.4.2.9.2................................................... createNode
 145 

3.4.2.9.2.1 .............................................................................................CreateDataConstructor
 145 

3.4.2.9.2.2 ................................................................................................... CreateNestedNode
 146 



129 

3.4.2.9.2.3 .......................................................................................................CreateDataNode
 147 

3.4.2.9.2.4 ................................................................................................... CreateSwitchNode
 148 

3.4.2.9.2.5 .......................................................................................................CreateForkNode
 149 

3.4.2.10..................................................................................... resize150 
3.4.2.11......................................................................................move150 

3.4.2.11.1................................................. MoveNode
 150 

3.4.2.11.2......................................... MoveConnector
 151 

3.4.2.11.3......................................InvalidConnection
 152 

3.4.2.12.....................................................................................delete153 
3.4.3 Object model.............................................................................. 153 

3.4.3.1 Entity Objects ................................................................. 154 
3.4.3.2 Boundary Objects........................................................... 156 
3.4.3.3 Control Objects............................................................... 157 

3.4.4 Dynamic model.......................................................................... 159 
3.4.4.1 CreateTestNest Sequence Diagram............................... 159 
3.4.4.2 CreateDataNode Sequence Diagram............................. 160 
3.4.4.3 displayCurrentNode Sequence Diagram....................... 160 

3.4.5 User interface- navigational paths and screen mock-ups...... 160 

4 GLOSSARY........................................................................................................... 161 



130 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 THIS PAGE INTENTIONALLY LEFT BLANK 



131 

 

INTRODUCTION 

PURPOSE OF THE SYSTEM 
 

”The task is to design a front end for a prototype implementation of a visual 
programming language. This is a research prototype; the aim is to demonstrate the new 
capabilities of two-dimensional data flow diagram notation for describing algorithms and 
data structures. Although data flow diagrams are well known and broadly used in 
software design practice, nobody has tried this particular combination of data flow 
notation with a two dimensional representation of data in order to write executable 
programs. The OOPSLA 2001 paper provides more detailed discussion and examples of 
this approach.” 1 

 

SCOPE OF THE SYSTEM 
System boundaries are described as follows: 

System

User

Interpreter

Parser

 

DEFINITIONS, ACRONYMS AND ABBREVIATIONS 
Can be found in the Glossary. 

REFERENCES 
1.  Problem Statement for Term Project, SW4583, Spring 2004 
2.  M. Auguston, V. Berzins and B. Bryant, “Visual Meta-Programming 

Language”, 2001. 



132 

OVERVIEW 

CURRENT SYSTEM 

PROPOSED SYSTEM 

OVERVIEW 
The proposed system, a graphical user interface (GUI) for a visual programming 

language, is well described in the references.  The methodology for development and its 
products are described here as an overview of the process.  This document portrays an 
order for presentation but not actual development path.  As shown below, this work was 
not a straight path to its present form.   

The references were studied for requirements.  Developers created scenarios 
using the prototype and references.  The scenario catalog has been extended as need was 
discovered during the iterative process.  From study of the scenario commonalities the 
team developed use-cases.  Again use-cases were added as required in the iterative 
process.  The current use-case taxonomy was created by analysis of the existing cases.  
Some use-cases were not developed and others received extensive elaboration as required 
for progress by the development team.  Objects were identified through analysis of use-
cases and partitioned as described.  Dynamic models were developed for each use case 
as required, using the generated objects.  In this case, developers constructed these 
models after problems in object design emerged.  Finally, a user interface mock-up is 
referenced but is represented by a java jar file included with the design documents. 

FUNCTIONAL REQUIREMENTS 

Vision Statement Excerpt 
 

“The required system should provide the following basic functionality.  
• Visual editor that supports drawing and storing of two-dimensional diagrams. 

Typical operations include add, delete, resize, and move a node, connect/disconnect 
nodes, add/delete/edit textual information associated with the whole diagram and with 
separate nodes.  

• User can store a diagram and later load it and continue editing.  
• When editing of a diagram is completed, user will store it as a text file and pass to 

the parser (which is independent component, not part of this project). If parser detects 
presence of syntax or semantic errors it notifies the editor and the editor displays the error 
messages.  

• After a successful parsing, the diagram can be executed by an interpreter (which 
also is an independent component, not part of this project). If the execution is performed 
in a debugging mode, the interpreter sends a message to the editor indicating the current 
step in the execution process, and the editor highlights the corresponding part of the 
diagram so that the user can trace the execution on the screen.” 1 

 



133 

Vision Statement Analysis 
A textual analysis was performed on the above statement and the following 

functions found: 
Select and Paste 
Select, Cut and Paste 
Resize 
Connect 
Move 
Save  
Compile 
Load 
Receive and Display Error 
Receive and Display Current Object of execution 
Copy and Paste 

Lab Demonstration Analysis 
An analysis was performed on the first lab session and the following functions 

found: 
 

Change Properties 
Select and … (make iterative) 
Select several create Pattern Group  
Edit Pattern Group (likely extension) 
Selecting nested objects as a group (likely extension) 

 

NONFUNCTIONAL REQUIREMENTS 
4. Implementation 

“For the sake of portability to different platforms, the editor should be 
implemented in Java using Java Swing framework.” 1 

SYSTEM MODELS 
5. Scenarios 



134 

stecker:User

createTestNest

generateCodeErroneousDiagram

buildComponent

OperateW/oMouse

deleteElement

editElement

parser:compiler

interpreter:executor

diskDrive:storage

 
 

editElement 
Scenario 

name 
editElement 

Participating 
actor instances 

stecker:user 

Flow of 
events 

1. Stecker determines item (element) to edit 
2. Stecker selects element (only 1 click) 
3. Application highlights element 
4. On double-click, application opens “edit element” dialogue 

box 
5. Stecker changes the element characteristics (eg. number of 

input ports, number of output ports, etc.) 
6. Application warns Stecker if ports are currently in use 
7. Stecker clicks “OK” button to verify corrections 
8. Application verifies validity of corrections (i.e. can’t have 1.5 

ports) 
9. Application makes changes to view 
10. Stecker determines validity of changes 
11. If changes are not as desired, Stecker makes corrections 
12. If changes are as desired, Stecker compiles and runs the 

model, or saves the model for later use 
Step 6:  Customer input:  Parser delivers error messages and GUI shows state of 

ports.  No further development of this function. 
Step 8:  Lead developer:  Limit input to valid conditions by using a list of 

choices. 
 



135 

operateW/oMouse 
Scenario 

name 
operateW/oMouse 

Participating 
actor instances 

stecker:user 

Flow of 
events 

1. Stecker is working within application 
2. Stecker determines mouse cursor or “click” function do not 

work, or Stecker does not wish to use mouse 
3. Stecker uses keyboard 
4. Stecker uses “F1” to call help function 
5. Stecker types keyboard/keystrokes/mouse/etc. to determine 

default keystrokes in order to use application 
6. Default keystrokes are displayed for all major functions of 

application (e.g. move, resize, add element, etc.) 
7. Stecker prints keystrokes 
8. Streker creates a model using only keystrokes 
9. If changes are not as desired, Stecker makes corrections 
10. If changes are as desired, Stecker compiles and runs the 

model, or saves the model for later use 
11. Stecker exits application 

27 May 04:  Customer desires no further development of this scenario. 
Step 1:  Lead developer:  Understood, does not need elaboration. 
Customer question:  How will a user navigate on the diagram in this scenario?  

Answer:  By using tab key, forward and back, in tab order.  Note: All visible items must 
be contained in the tab order. 

 

createTestNest  
Scenario 

name 
createTestNest  

Participating 
actor instances 

bruce: User 

Flow of 
events 

1. Bruce clicks on the Data button in the toolbar and then clicks 
on the position within an existing Data Node on the canvas 
area where he wants the center of the outer data node. 

2. Bruce names the node “TestInner1”, indicates there will be 3 
input  ports, and selects ellipses (‘…’)  in the properties 
window. 

3. Bruce moves the inner node to the lower right corner of the 
outer node. 

4. Bruce resizes the outer node to make room for a second 
inner node. 

5. Bruce again clicks on the Data button in the toolbar and 
clicks on the position within the outer data node where he 
wants the second inner data node. 

6. Bruce names the node “TestInner2”, and indicates there will 



136 

be 1 input in the properties window. 
7. Bruce moves the second inner node to the lower left corner 

of the outer node. 
8. Bruce right-clicks on the “TestInner1” node and changes the 

number of input ports to 2 in the properties window. 
Step 1:  Further elaboration has determined that the nesting state will be 

determined exclusively by the graphical depiction of one element inside the boundaries 
of another.  The parser will check for illegal conditions.  This direction is chosen to 
reconcile apparent visual logic with underlying reality. 

Step 11:  Under current development plan, the move button must be selected 
prior to selecting and moving this node. 

 

deleteElement 
Scenario 

name 
deleteElement 

Participating 
actor instances 

stecker:user 

Flow of 
events 

1. Stecker is working within application 
2. Stecker selects the delete function from the roolbar (or with a 

keystroke or menu item) 
3. Application waits for “element click” 
4. Application changes cursor upon encountering an element 
5. Stecker selects element 
6. Application request confirmation to delete element 
7. Application gives warning if element is connected to another 

object 
8. Connections are detached 
9. Element is removed 
10. If changes are not as desired, Stecker makes corrections 
11. If changes are as desired, Stecker compiles and runs the 

model, or saves the model for later use 
12. Stecker exits application 

Step 1:  Lead developer:  Understood, does not need elaboration. 
Step 7:  Customer input:  GUI shows relationships.  No further development of 

this function. 
Step 8:  Customer input:  Connections are deleted 
Step 10:  Further editing is allowed. 
 
 
 

buildComponent 
Scenario 

name 
buildComponent 

Participating stecker:user, hardDrive:storage, parser:compiler:, 



137 

actor instances interpreter:executor 
Flow of 

events 
1. Stecker starts the application 
2. Presented with a blank diagram, Stecker changes the diagram 

signature and title to D-component and Integer Mixer. 
3. He changes to three input ports for the diagram. 
4. Stecker selects a switch for his use. 
5. Stecker positions the switch on the diagram area. 
6. He turns the switch into a 2 port input. 
7. Next he labels the diagram ports and the switch ports. 
8. He labels the switch to provide his intended functionality. 
9. He resizes the switches to make the text readable. 
10. Next he copies this switch twice to end up with three 

switches all with the same formatting and positions the two 
new switches. 

11. After adding a fork, he connects appropriate ports together. 
12. Stecker has added a second, unneeded fork on the diagram, 

so he deletes it from the diagram. 
13. Satisfied with this version of the diagram he saves a copy to 

his hard drive for future use. 
14. He then opens his main project so he can add this component 

into his design. 
15. Stecker now compiles and runs his main application, 

observing the results. 
Steps 2,13 Question:  What is the difference between a diagram title and 

signature?  (In the prototype only the title appears in the text file.) 
         Answer:  Actually, both the title (the name of program represented by the 

diagram) and the signature of this program are needed. 
Current prototype just does not store the signature in the output text file... 
Step 7:  Customer input:  Diagram ports may not be labeled.  Note picture 

corrections. 
Step 14:  Customer question:  How is this accomplished?  Answer:  By using the 

rule call node representing the just saved diagram to add this “component” to a higher 
level diagram. 

 



138 

 
original- buildComponent scenario screen result 

 



139 

corrected- buildComponent scenario screen result 

  generateCodeErroneousDiagram 
Scenario 

name 
generateCodeErroneousDiagram  

Participating 
actor instances 

bruce: User 

Flow of 
events 

1. Bruce, having completed his diagram, clicks on “Tools” in 
the menu bar and then “Generate Code”. 

2. Bruce enters “FirstTry” as the filename to which to save the 
diagram in the ‘Save As’ dialog window. 

3. Bruce receives acknowledgment the code is being generated. 
4. Bruce receives an error message indicating a port is unbound 

on a node called “Data1” and on a node called “Merge2”. 
5. Bruce acknowledges the error to close the error message 

window. 
6. Bruce corrects the error by connecting “Data1”s unbound 

ouput port to “Merge2”s unbound input port 
7. Bruce right-clicks on “Tools” in the menu bar and right-

clicks “Generate Code” 
8. Bruce receives acknowledgment the code is being generated. 
9. Bruce receives acknowledgment the code has successfully 

been generated. 
Step 4:  Customer input:  Ports may be unconnected, it is not an error.  Error 

messages are in the form of highlighted nodes. 
 
 
6. Use case model 



140 

User

Parser

Interpreter

startProgram

editDiagram

loadDiagram

saveDiagram

generateCode

runCode

displayError

displayCurrentNode

Storage

<< initiate >>

<< initiate >>

<< initiate >>

<< initiate >>

<< initiate >>

<< initiate >>

<< initiate >>

<< initiate >>

<< participate >>

<< participate >>

<< participate >>

<< participate >>

 

runCode 
No further detail 

startProgram  
No further detail 

displayCurrentNode  
No further detail 

loadDiagram  
No further detail 

saveDiagram  
No further detail 

GenerateCode 
 

Use Case 
Name 

GenerateCode 
 

Participating 
Actors 

Initiated by User 
Communicates with Interpreter 

Flow of 
events 

The User left-clicks on “Tools” in the menu bar and 
then selects “Generate Code”. 

 
1. The system responds by displaying a message dialog 



141 

stating that the diagram is being saved and interpreted. 
 

2. The system removes any highlighting from Nodes 
previously in error, saves the diagram to text, and passes 
the text file to the Interpreter. 

 
3. The system receives acknowledgment that the Interpreter 

completed processing the file. 
If the system receives an error from the 

Interpreter, the ReceiveInterpreterError use case is used. 
 

4. The system displays a message dialog, indicating that the 
code has been generated. 

 
5. The User acknowledges completion by right-clicking the OK 

button to close the message dialog. 
 

Entry 
Conditions 

1. A Diagram exists. 

Exit 
Conditions 

• A text file exists representing both the placement of the 
elements of the diagram and the data represented by the 
diagram. 

• Code generated from the diagram exists. 
 
 

displayError 
Use Case 

Name 
displayError 

Participating 
Actors 

Initiated by Interpreter 
Communicates with User 

Flow of 
events 

1. The Interpreter sends an error message to the system. 
 

2. The system displays an appropriate message dialog to the 
User. 

 
3. The User acknowledges the error by right-clicking the OK 

button to close the message dialog. 
 

4. The system highlights the Node or Nodes responsible for 
the error. 

Entry 
Conditions 

1. An attempt to Generate Code has been made. 
2. An error in the diagram caused an Interpreter error. 

Exit 
Conditions 

• Code Generation is aborted. 
• The Node(s) most likely in error are highlighted. 

 



142 

editdiagram 

editDiagram

create delete

User

<< initiate >>

resize

<< include >>

move

<< include >>
<< include >>

<< include >>

 

create 
 

User

create

<< initiate >>

createConnector

<< include >>

createNode

<< include >>

 

createConnector 



143 

User

createConnector

createStreamConnector

<< initiate >>

createAssociationcreateDataFlowConnector

<< include >><< include >>
<< include >>

 

(a) CreateStreamConnector 
 

Use Case 
Name 

CreateStreamConnector 
 

Participating 
Actors 

Initiated by User 
 

Flow of 
events 

1. The User left-clicks on the Connector button in the ToolBar. 
 

2. The system indicates that it is in Connector Mode by 
highlighting the Connector button and displaying 
“Connector Mode” in the Status Bar. 

 
3. The User left-clicks on a Port which will be one end of the 

Connector. 
 

4. The system draws a Connector with one end at the 
selected Port and the other at the Cursor.  If the selected 
Port is an InputPort, the head of the Connector will be at 
that port, otherwise, the head will be at the Cursor. 

 
5. The User moves the Cursor to a different location in the 

Diagram.   
 

6. The system continues to redraw the arrow as described in 
Step 4. 

 
7. The User left-clicks on a Port which will be other end of the 

Connector. 



144 

 
8. The system draws a Connector with one end at the first 

Port and the other at the newly-selected Port. 
 

Entry 
Conditions 

1. Two Nodes exist in the Diagram 
2. There exists at least one unconnected InputPort and one 

unconnected OutputPort. 
 

Exit 
Conditions 

• System is in Connector Mode 
 

Assumptions • Connectors can only connect one InputPort to one OutputPort. 
 

 
 

(b) CreateDataFlowConnector 
Use Case 

Name 
CreateDataFlowConnector 
 

Participating 
Actors 

Initiated by User 
 

Flow of 
events 

1. The User left-clicks on the Dataflow Connector button in the 
ButtonBar. 

 
2. The system indicates that it is in Dataflow Connector 

Mode by highlighting the Dataflow Connector Button and 
displaying “Dataflow Connector Mode” in the Status Bar. 

 
3. The User left-clicks on the Pallet where she wants the center 

of the pair of Dataflow Connectors (DataFlowHead and 
DataFlowTail Nodes).  Customer input:  the parser will check 
for consistency.  DF-head and DF-tail can be independently 
created.  Multiple DF-connectors can have the same name. 

 
4. The system displays a Dataflow Connector Properties 

Window. 
 

5. The User modifies the Name field of the Dataflow Connector 
Properties Window.   

 
6. The system draws a pair of Dataflow Connectors on the 

Pallet centered on the point the User clicked and 
annotates both with their name.  The DataFlowHead is 
annotated with an InputPort and the DataFlowTail is 
annotated with an OutputPort. 

 
7. The User moves the DataFlowHead Node to its appropriate 



145 

location.  Include MoveNode use case. 
 

8. The User connects an Arrow to the InputPort of the 
DataFlowHead.  Include CreateConnector use case. 

 
9. The User moves the DataFlowTail Node to its appropriate 

location.  Include MoveNode use case. 
 

10. The User connects an Arrow to the OutputPort of the 
DataFlowTail.  Include CreateConnector use case. 

 
Entry 

Conditions 
1. None 

Exit 
Conditions 

• System is in Connector Mode 
 

 

(c) createAssociation 
Not detailed 

createNode 

User

createNode

<< initiate >>

createDataConstructor createNestedNode createDataNode

<< include >>
<< include >>

<< include >>

createSwitchNode createForkNode

<< include >>
<< include >>

 

(d) CreateDataConstructor 



146 

 
Use Case 

Name 
CreateDataConstructor 
 

Participating 
Actors 

Initiated by User 
 

Flow of 
events 

1. The User left-clicks on the Data Constructor button. 
 

2. The system indicates that it is in Data Constructor Mode 
by displaying “Data Constructor Mode” in the Status Bar. 

 
3. The User left-clicks on the Pallet where she wants the center 

of the outer box. 
 

4. The system displays a Data Constructor Properties 
Window. 

 
5. The User modifies the Name and Output Port Name fields of 

the Data Constructor Properties Window.  Customer note:  
Output ports may not be named. 

 
6. The system draws a rectangle on the Pallet centered on the 

point the User clicked and annotates the rectangle with 
the a output port labeled with its name and labels the 
rectangle with the Node’s Name. 

 
Entry 

Conditions 
2. None 

Exit 
Conditions 

• System is in Data Constructor Mode 
• Output ports of the Data Constructor Node are disconnected 
• Node appears to be a regular Data Node, but has no Input 

Ports. 
 

Assumptions • Data Constructors always have no input port and one output 
port 

• Data Constructors have at least one nested Data Node (input) 
 

 

(e) CreateNestedNode 
Lead designer note:  Should be a mode.  Development team:  from 3.4.1.3, 

Further elaboration has determined that the nesting state will be determined exclusively 
by the graphical depiction of one element inside the boundaries of another.  The parser 
will check for illegal conditions.  This direction is chosen to reconcile apparent visual 
logic with underlying reality. 

 
Use Case CreateNestedNode 



147 

Name  
Participating 

Actors 
Initiated by User 

Flow of 
events 

1. The User left-clicks on the Data Node button in the toolbar. 
 

2. The system responds by indicating that it is in Data Node 
Mode by displaying “Data Node Mode” in the status bar. 

 
3. The User left-clicks at a position on the pallet within a Data 

Constructor Node to indicate where the Data Node will be 
placed. 

 
4. The system responds by displaying a Properties Window. 

 
5. The User fills out the Name and Input Port Name fields, and 

indicates whether or not to annotate the Node with ellipses 
(‘…’).  in the Properties Window.   

 
6. The system draws a black rectangle within the borders of 

the Data Constructor Node and annotates the rectangle 
with ellipses, if applicable, and appropriately labeled 
input ports, The rectangle is also labeled with the name of 
the Data Node. 

 
Entry 

Conditions 
1. A Data Constructor Node exists on the Pallet 

Exit 
Conditions 

• The system is in Data Node Mode 
• The Data Node’s input ports are disconnected 
• The Data Node has no output ports (differs from 

CreateDataNode) 
 

Assumptions • The Nested Data Node can have 1 or more input ports. 
• The Nested Data Node has no output ports. 

 

(f) CreateDataNode 
 
 

Use Case 
Name 

CreateDataNode 
 

Participating 
Actors 

Initiated by User 

Flow of 
events 

1. The User left-clicks on the Data Node button in the toolbar. 
 

2. The system responds by indicating that it is in Data Node 
Mode by displaying “Data Node Mode” in the status bar. 



148 

 
3. The User left-clicks at a position on the pallet within a Data 

Constructor Node to indicate where the Data Node will be 
placed. 

 
4. The system responds by displaying a Properties Window. 

 
5. The User fills out the Name, Input Port Names, and Output 

Port Names fields in the Properties Window.  Customer note:  
Output ports may not be named. 

 
6. The system draws a black rectangle within the borders of 

the Data Constructor Node and annotates the rectangle 
with the appropriately labeled input and output ports and 
labels the rectangle with the name of the Data Node.  
Customer note:  Output ports may not be named. 

 
Entry 

Conditions 
1. The Visual Editor program is executing. 

Exit 
Conditions 

• The system is in Add Data Node mode 
• The Data Node’s input and output ports are disconnected 

 
Assumptions • The Node’s name also represents the mapping of inputs to 

outputs in the form of an expression. 
 
 

(g) CreateSwitchNode 
 

Use Case 
Name 

CreateSwitchNode 
 

Participating 
Actors 

Initiated by User 

Flow of 
events 

1. The User left-clicks on the Switch Node button in the toolbar. 
 

2. The system responds by indicating that it is in Switch Node 
Mode by displaying “Draw a Binary Switch” in the status bar. 

 
3. The User left-clicks at a position on the pallet in order to 

indicate where the Switch Node will be placed. 
 

4. The system responds by displaying a Properties Window. 
 

5. The User fills out the Name, and Input Port Names in the 
Properties Window.   

 



149 

6. The system draws a four sided polygon and annotates the 
polygon with the appropriately labeled input and output ports 
and labels the polygon with the name of the Switch Node. 

 
Entry 

Conditions 
1. The Visual Editor program is executing. 

Exit 
Conditions 

• The system is in Draw a Binary Switch mode 
• The Switch Node’s input and output ports are disconnected 

 
Assumptions • The Node’s name also represents the mapping of inputs to 

outputs in the form of an expression. 
 
 

(h) CreateForkNode 
 
 

Use Case 
Name 

CreateForkNode 
 

Participating 
Actors 

Initiated by User 

Flow of 
events 

1. The User left-clicks on the Fork Node button in the toolbar. 
 

2. The system responds by indicating that it is in Fork Node 
Mode by displaying “Add Fork Element” in the status bar. 

 
3. The User left-clicks at a position on the pallet in order to 

indicate where the Fork Node should be placed. 
 

4. The system responds by displaying a Properties Window. 
 

5. The User sets the number of output ports in the Properties 
Window.   

 
6. The system draws a trapezoid with one input port and the 

number of output ports specified by the user. 
 

Entry 
Conditions 

1. The Visual Editor program is executing. 

Exit 
Conditions 

• The system is in Add Fork Element mode 
• The Fork Node’s input and output ports are disconnected 

 
Assumptions  
 



150 

resize 
No further detail 

move 

User

move

<< initiate >>

moveNode moveConnector

<< include >> << include >>

invalidConnection

 

MoveNode 
 

Use Case 
Name 

MoveNode 
 

Participating 
Actors 

Initiated by User 
 

Flow of 
events 

1. The User left-clicks on the Move button in the ToolBar. 
 

2. The system indicates that it is in Data Constructor Mode 
by highlighting the Move Button and displaying “Move 
Mode” in the Status Bar. 

 
3. The User left-click-and-holds on the Node she wishes to 

move. 
 

4. The system redraws the selected Node with a dashed 
outline. 



151 

 
5. The User continues to hold the left mouse button and drags 

the Node to a new position in the Diagram.   
 

6. The system continues to redraw the Node, any Nested 
Nodes,  and associated Ports and Connectors as the Node 
is moved.  (‘The Node chases the cursor’) 

 
7. The User releases the left mouse button. 

 
8. The system redraws the Node with a solid outline and 

redraws any Nested Nodes, and associated Ports and 
Connectors 

 
Entry 

Conditions 
1. A Node exists in the Diagram 

Exit 
Conditions 

• System is in Move Mode 
• Node, its Nested Nodes, and associated Ports and Connectors 

are moved. 
 

 

MoveConnector 
 

Use Case 
Name 

MoveConnector 
 

Participating 
Actors 

Initiated by User 
 

Flow of 
events 

1. The User left-clicks on the Move button in the ToolBar. 
 

2. The system indicates that it is in Move Mode by 
highlighting the Connector button and displaying “Move 
Mode” in the Status Bar. 

 
3. The User left-clicks on a Port to which the end of the 

Connector to be moved is attached. 
 

4. The system draws a Connector with one end at the Cursor 
and the other at the Connector’s other Port (‘anchor’).  If 
the selected Port is an InputPort, the head of the 
Connector will be at the Cursor, otherwise, the head will 
be at the anchor. 

 
5. The User moves the Cursor to a different location in the 

Diagram.   
 



152 

6. The system continues to redraw the arrow as described in 
Step 4. 

 
7. The User left-clicks on a Port which will be new location of 

the ‘loose’ end of the Connector. 
 

8. The system draws a Connector with one end at the anchor 
Port and the other at the newly-selected Port. 

 
Entry 

Conditions 
1. There exists at least one Connector. 

Exit 
Conditions 

• System is in Connector Mode 
 

Assumptions • Connectors can only connect one InputPort to one OutputPort. 
• Connector can be moved from a Port to the same Port (trivial) 

 
 

InvalidConnection 
Customer input:  This should be avoided.  Development team:  Use of the system 

is envisioned beyond the immediate customer.  We consider this minor functionality. 
Use Case 

Name 
InvalidConnection 
 

Participating 
Actors 

Communicates with User 
 

Flow of 
events 

The InvalidConnection use case extends any use case that 
connects Connectors to Ports in which a Connector is attempted 
to connect to anything other than an appropriate port (InputPort 
or OutputPort). 

 
1. The system displays an error in the Status Bar, appended 

to the current message. 
 

2. The system returns the Connector to its previous Port.  If 
there is no previous Port (as in CreateConnector), do 
nothing. 

 
Entry 

Conditions 
1. System is in Connector Mode. 
2. An attempt to connect a Connector to either nothing or an 

inappropriate port was made. 
Exit 

Conditions 
• System is in Connector Mode 
• An error message is appended to the current message in the 

Status Bar 
 

Assumptions • Connectors can only connect one InputPort to one OutputPort. 
 



153 

 
 

delete 
No further detail. 

 
 
 
 
7. Object model 



154 

Entity Objects 

Program

Diagram

Node

Connector
DataNode

Switch

Merge

Fork

DataObjectPattern

Data Flow

Stream

ruleCall

Port

*

*

Association

ConnectorNode

Male

Female

AltenativePattern

*

2

 



155 

 
 
 
 
Entity Object Attributes & 

Associations 
Definition 
 

Diagram • Name 
• Contained Nodes 
• Contained Ports 
• Contained Connectors 

 

The Diagram is the 
canvas on which the User 
creates a diagram.  It 
encompasses all the items 
from which code will be 
generated. 

 
Node • Unique Identifier 

• Label 
• List of Input Ports 
• List of Output Ports 
• Size 
• Position in Diagram 
• List of Nested Nodes 

 

The Node is the 
basic element with which 
the User creates the 
Diagram. The node has 0 or 
more InputPorts and 0 or 
more OutputPorts.  Nodes 
can be nested within other 
nodes. 

Port • Unique Identifier 
• Label 
• Associated Node 
• Associated Connector 

The User uses Ports 
to connect one Node with 
another.  A Port is, in 
essence, attached to a Node 
and is connected to one end 
of a Connector.  A Port can 
be connected to only one 
Connector. 

 
StreamConnector • Unique Identifier 

• Input Port 
• Output Port 

The User uses 
Stream Connectors to 
represent a directional 
relationships between 
Nodes.  A Connector 
connects one InputPort to 
one OutputPort and buffers 
input while awaiting output. 

DataFlowConnector • Unique Identifier 
• Head Connector 
• Tail Connector 

A directional 
Connector between a 
matched pair of Nodes.  
Data items flow one at a 
time through this 
connection. 

 



156 

Boundary Objects 

Program

Selector Interface Message

*

*

*

* *

*

 
Boundary Object Definition 

 
PositionSelector Inputs coordinates  

 
UserStatusMessage • Current Mode of the Editor 

• Error Messages 
• Text Display Field 

ModeSelector Inputs new Mode 
DataNodePropertiesWindow Interface used by User to specify 

the properties of a DataNode during 
creation or editing 

 
SwitchNodePropertiesWindow Interface used by User to specify 

the properties of a SwitchNode during 
creation or editing 

 
MergeNodePropertiesWindow Interface used by User to specify 

the properties of a MergeNode during 
creation or editing 

 
ForkNodePropertiesWindow Interface used by User to specify 

the properties of a ForkNode during 
creation or editing 

 
DCallNodePropertiesWindow Interface used by User to specify 

the properties of a DCallNode during 
creation or editing 

 
PatternNodePropertiesWindow Interface used by User to specify 

the properties of a PatternNode during 
creation or editing 

 



157 

DataFlowConnectorPropertiesWindow Interface used by User to specify 
the properties of a DataFlowConnector 
and its components, DataFlowHeadNode 
and DataFlowTailNode during creation or 
editing 

 
PortPropertiesWindow Interface used by User to specify 

the properties of a Port during creation or 
editing 

 
SavingMessageDialog Message received by User that the 

Diagram is being saved to Disk  
 

CodeGeneratedMessageDialog Message received by User that 
Code has been successfully generated 
from the current Diagram 

 
InterpreterErrorMessageDialog Message received by User that an 

error occurred while generating code 
from the current Diagram 

 
DiagramOpenDialog Interface used by User to find and 

open a Diagram from Disk. 
 

SaveDiagramAsDialog Interface used by User to specify 
the name and location of the file to which 
the current Diagram will be saved. 

 
Parser Interface Bridge connecting System with 

Parser, allows error display and execute 
compilation message 

Execute Compilation Message Directs Parser to compile file(s) 
Interpreter Interface Bridge connecting System with 

Interpreter, allows stepped execution of 
code for debugging and current node 
display. 

Interface Selector High level selector, allows user to 
pick a high level interface for use. 

 

Control Objects 
The state information required to initialize the system and maintain current status 

of the system is in the “State Record”.  Various control objects for different tasks ; file 
I/O, parser function, interpreter function, etc.; complete the Controller. 



158 

Program

State Record Control

Controller

*

 
Control Objects Definition 
System Interpreter Input Control Accepts and distributes 

asynchronuse messages from the interpreter 
for use by control objects. 

Controller High level abstraction of all control 
objects 

State Record Persistent data attributes of system 
Diagram Selection Control Displays the appropriate diagram 

given a node identification.  Shows the 
diagram that contains that node. 

Diagram Node Highlighted Control Creates a highlighted effect over the 
given node.  Calls attention to that node.  
Also used to reverse this effect. 

File Input/Output Controller Controls all file I/O 
System Parser Input Control Accepts and distributes 

asynchronuse messages from the interpreter 
for use by control objects. 

Debug Control Maintains status of interaction and 
intention with the Interpreter. 

Compiler Control Maintains status of interaction and 
intention with the Parser. 

Initialization Control Responsible for setting initial State 
Record values, creating the primary 
interface and blank initial diagram. 

Diagram Save and Close Control When closing checks to see if saved 
previously, if not offers to save. 

Exit Application Control Manages housecleaning functions 
before termination. 



159 

New Diagram Control Manages creation of a fresh 
diagram. 

 
8. Dynamic model 

CreateTestNest Sequence Diagram 

 



160 

CreateDataNode Sequence Diagram 

User

ModeSelector

selectMode(DataNode)

Controller

setMode(DataNode)

UserStatusMessage

displayMode
DataNode

createDataNode

Diagram

RegisterElement

DataNodePropertiesWindow

create

display

PositionSelector

selectPosition(Point)

currentPosition(Point)

 

displayCurrentNode Sequence Diagram 

 
 
9. User interface- navigational paths and screen mock-ups 

A java jar file accompanies this development package and represents our screen 
mock-up and menu navigation proposal.  Note the active functionality of the current 
mode display. 



161 

 

GLOSSARY 
 
ACTIONS - User created events. 
 
CANVAS – Portion of the user interface on which the Diagram is created and 

displayed.  The working area of the GUI. 
 
CONNECTORS - Represents data paths, associates ports or nodes to one another. 
 
DIAGRAM - Displayable collection of elements, their relationships and positions.  

A diagram is a graphical representation of an executable program. 
 
ELEMENT - High level abstraction for graphical elements: node, connector, port. 
 
INTERPRETER – A separate program that takes a diagram as input and executes 

the program described by the diagram. 
 
MODE - Current state of Visual Editor, defines behavior expected by user 

interaction.  Each Node type has a unique mode, as does each Connector and Action 
types. 

 
NESTED - The graphical and logical encapsulation of a Data Node or Pattern by 

another of the same type.  The depth of nesting has no limit. 
 
NODE - Logical and graphical element that represents structure and/or operation. 
 



162 

PARSER – A program that checks a diagram for syntax errors. 
 
PATTERN - 

Alternative Pattern- only continues on match 
Atomic Pattern- constant to attempt match with 
Rule Call- Subroutine, defined elsewhere (in another file) 
Data Object Pattern- Filter 
Pattern Group- contains other Icons, onscreen defined subroutine 
 

PORT - A place connectors can be associated with, described in entity objects.  
Represents data input or output of a node. 

 
 

 



163 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Marine Corps Representative 
Naval Postgraduate School 
Monterey, California 

 
4. Director, Training and Education, MCCDC, Code C46 

Quantico, Virginia 
 
5. Director, Marine Corps Research Center, MCCDC, Code C40RC 

Quantico, Virginia 
 

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer) 
Camp Pendleton, California 

 
7. Graham Pierson 

Naval Postgraduate School 
Monterey, California 
 

8. Mikhail Auguston  
Naval Postgraduate School 
Monterey, California 

 
9. Scott Coté  

Naval Postgraduate School 
Monterey, California 

 
10. William Welch  

Naval Postgraduate School 
Monterey, California 

 


